based-on-stm32-taxi-meter/Bootloader/Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_ll_rcc.h

2310 lines
82 KiB
C
Raw Normal View History

2024-05-02 14:03:11 +08:00
/**
******************************************************************************
* @file stm32f1xx_ll_rcc.h
* @author MCD Application Team
* @brief Header file of RCC LL module.
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file in
* the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM32F1xx_LL_RCC_H
#define __STM32F1xx_LL_RCC_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx.h"
/** @addtogroup STM32F1xx_LL_Driver
* @{
*/
#if defined(RCC)
/** @defgroup RCC_LL RCC
* @{
*/
/* Private types -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private constants ---------------------------------------------------------*/
/* Private macros ------------------------------------------------------------*/
#if defined(USE_FULL_LL_DRIVER)
/** @defgroup RCC_LL_Private_Macros RCC Private Macros
* @{
*/
/**
* @}
*/
#endif /*USE_FULL_LL_DRIVER*/
/* Exported types ------------------------------------------------------------*/
#if defined(USE_FULL_LL_DRIVER)
/** @defgroup RCC_LL_Exported_Types RCC Exported Types
* @{
*/
/** @defgroup LL_ES_CLOCK_FREQ Clocks Frequency Structure
* @{
*/
/**
* @brief RCC Clocks Frequency Structure
*/
typedef struct
{
uint32_t SYSCLK_Frequency; /*!< SYSCLK clock frequency */
uint32_t HCLK_Frequency; /*!< HCLK clock frequency */
uint32_t PCLK1_Frequency; /*!< PCLK1 clock frequency */
uint32_t PCLK2_Frequency; /*!< PCLK2 clock frequency */
} LL_RCC_ClocksTypeDef;
/**
* @}
*/
/**
* @}
*/
#endif /* USE_FULL_LL_DRIVER */
/* Exported constants --------------------------------------------------------*/
/** @defgroup RCC_LL_Exported_Constants RCC Exported Constants
* @{
*/
/** @defgroup RCC_LL_EC_OSC_VALUES Oscillator Values adaptation
* @brief Defines used to adapt values of different oscillators
* @note These values could be modified in the user environment according to
* HW set-up.
* @{
*/
#if !defined (HSE_VALUE)
#define HSE_VALUE 8000000U /*!< Value of the HSE oscillator in Hz */
#endif /* HSE_VALUE */
#if !defined (HSI_VALUE)
#define HSI_VALUE 8000000U /*!< Value of the HSI oscillator in Hz */
#endif /* HSI_VALUE */
#if !defined (LSE_VALUE)
#define LSE_VALUE 32768U /*!< Value of the LSE oscillator in Hz */
#endif /* LSE_VALUE */
#if !defined (LSI_VALUE)
#define LSI_VALUE 40000U /*!< Value of the LSI oscillator in Hz */
#endif /* LSI_VALUE */
/**
* @}
*/
/** @defgroup RCC_LL_EC_CLEAR_FLAG Clear Flags Defines
* @brief Flags defines which can be used with LL_RCC_WriteReg function
* @{
*/
#define LL_RCC_CIR_LSIRDYC RCC_CIR_LSIRDYC /*!< LSI Ready Interrupt Clear */
#define LL_RCC_CIR_LSERDYC RCC_CIR_LSERDYC /*!< LSE Ready Interrupt Clear */
#define LL_RCC_CIR_HSIRDYC RCC_CIR_HSIRDYC /*!< HSI Ready Interrupt Clear */
#define LL_RCC_CIR_HSERDYC RCC_CIR_HSERDYC /*!< HSE Ready Interrupt Clear */
#define LL_RCC_CIR_PLLRDYC RCC_CIR_PLLRDYC /*!< PLL Ready Interrupt Clear */
#define LL_RCC_CIR_PLL3RDYC RCC_CIR_PLL3RDYC /*!< PLL3(PLLI2S) Ready Interrupt Clear */
#define LL_RCC_CIR_PLL2RDYC RCC_CIR_PLL2RDYC /*!< PLL2 Ready Interrupt Clear */
#define LL_RCC_CIR_CSSC RCC_CIR_CSSC /*!< Clock Security System Interrupt Clear */
/**
* @}
*/
/** @defgroup RCC_LL_EC_GET_FLAG Get Flags Defines
* @brief Flags defines which can be used with LL_RCC_ReadReg function
* @{
*/
#define LL_RCC_CIR_LSIRDYF RCC_CIR_LSIRDYF /*!< LSI Ready Interrupt flag */
#define LL_RCC_CIR_LSERDYF RCC_CIR_LSERDYF /*!< LSE Ready Interrupt flag */
#define LL_RCC_CIR_HSIRDYF RCC_CIR_HSIRDYF /*!< HSI Ready Interrupt flag */
#define LL_RCC_CIR_HSERDYF RCC_CIR_HSERDYF /*!< HSE Ready Interrupt flag */
#define LL_RCC_CIR_PLLRDYF RCC_CIR_PLLRDYF /*!< PLL Ready Interrupt flag */
#define LL_RCC_CIR_PLL3RDYF RCC_CIR_PLL3RDYF /*!< PLL3(PLLI2S) Ready Interrupt flag */
#define LL_RCC_CIR_PLL2RDYF RCC_CIR_PLL2RDYF /*!< PLL2 Ready Interrupt flag */
#define LL_RCC_CIR_CSSF RCC_CIR_CSSF /*!< Clock Security System Interrupt flag */
#define LL_RCC_CSR_PINRSTF RCC_CSR_PINRSTF /*!< PIN reset flag */
#define LL_RCC_CSR_PORRSTF RCC_CSR_PORRSTF /*!< POR/PDR reset flag */
#define LL_RCC_CSR_SFTRSTF RCC_CSR_SFTRSTF /*!< Software Reset flag */
#define LL_RCC_CSR_IWDGRSTF RCC_CSR_IWDGRSTF /*!< Independent Watchdog reset flag */
#define LL_RCC_CSR_WWDGRSTF RCC_CSR_WWDGRSTF /*!< Window watchdog reset flag */
#define LL_RCC_CSR_LPWRRSTF RCC_CSR_LPWRRSTF /*!< Low-Power reset flag */
/**
* @}
*/
/** @defgroup RCC_LL_EC_IT IT Defines
* @brief IT defines which can be used with LL_RCC_ReadReg and LL_RCC_WriteReg functions
* @{
*/
#define LL_RCC_CIR_LSIRDYIE RCC_CIR_LSIRDYIE /*!< LSI Ready Interrupt Enable */
#define LL_RCC_CIR_LSERDYIE RCC_CIR_LSERDYIE /*!< LSE Ready Interrupt Enable */
#define LL_RCC_CIR_HSIRDYIE RCC_CIR_HSIRDYIE /*!< HSI Ready Interrupt Enable */
#define LL_RCC_CIR_HSERDYIE RCC_CIR_HSERDYIE /*!< HSE Ready Interrupt Enable */
#define LL_RCC_CIR_PLLRDYIE RCC_CIR_PLLRDYIE /*!< PLL Ready Interrupt Enable */
#define LL_RCC_CIR_PLL3RDYIE RCC_CIR_PLL3RDYIE /*!< PLL3(PLLI2S) Ready Interrupt Enable */
#define LL_RCC_CIR_PLL2RDYIE RCC_CIR_PLL2RDYIE /*!< PLL2 Ready Interrupt Enable */
/**
* @}
*/
#if defined(RCC_CFGR2_PREDIV2)
/** @defgroup RCC_LL_EC_HSE_PREDIV2_DIV HSE PREDIV2 Division factor
* @{
*/
#define LL_RCC_HSE_PREDIV2_DIV_1 RCC_CFGR2_PREDIV2_DIV1 /*!< PREDIV2 input clock not divided */
#define LL_RCC_HSE_PREDIV2_DIV_2 RCC_CFGR2_PREDIV2_DIV2 /*!< PREDIV2 input clock divided by 2 */
#define LL_RCC_HSE_PREDIV2_DIV_3 RCC_CFGR2_PREDIV2_DIV3 /*!< PREDIV2 input clock divided by 3 */
#define LL_RCC_HSE_PREDIV2_DIV_4 RCC_CFGR2_PREDIV2_DIV4 /*!< PREDIV2 input clock divided by 4 */
#define LL_RCC_HSE_PREDIV2_DIV_5 RCC_CFGR2_PREDIV2_DIV5 /*!< PREDIV2 input clock divided by 5 */
#define LL_RCC_HSE_PREDIV2_DIV_6 RCC_CFGR2_PREDIV2_DIV6 /*!< PREDIV2 input clock divided by 6 */
#define LL_RCC_HSE_PREDIV2_DIV_7 RCC_CFGR2_PREDIV2_DIV7 /*!< PREDIV2 input clock divided by 7 */
#define LL_RCC_HSE_PREDIV2_DIV_8 RCC_CFGR2_PREDIV2_DIV8 /*!< PREDIV2 input clock divided by 8 */
#define LL_RCC_HSE_PREDIV2_DIV_9 RCC_CFGR2_PREDIV2_DIV9 /*!< PREDIV2 input clock divided by 9 */
#define LL_RCC_HSE_PREDIV2_DIV_10 RCC_CFGR2_PREDIV2_DIV10 /*!< PREDIV2 input clock divided by 10 */
#define LL_RCC_HSE_PREDIV2_DIV_11 RCC_CFGR2_PREDIV2_DIV11 /*!< PREDIV2 input clock divided by 11 */
#define LL_RCC_HSE_PREDIV2_DIV_12 RCC_CFGR2_PREDIV2_DIV12 /*!< PREDIV2 input clock divided by 12 */
#define LL_RCC_HSE_PREDIV2_DIV_13 RCC_CFGR2_PREDIV2_DIV13 /*!< PREDIV2 input clock divided by 13 */
#define LL_RCC_HSE_PREDIV2_DIV_14 RCC_CFGR2_PREDIV2_DIV14 /*!< PREDIV2 input clock divided by 14 */
#define LL_RCC_HSE_PREDIV2_DIV_15 RCC_CFGR2_PREDIV2_DIV15 /*!< PREDIV2 input clock divided by 15 */
#define LL_RCC_HSE_PREDIV2_DIV_16 RCC_CFGR2_PREDIV2_DIV16 /*!< PREDIV2 input clock divided by 16 */
/**
* @}
*/
#endif /* RCC_CFGR2_PREDIV2 */
/** @defgroup RCC_LL_EC_SYS_CLKSOURCE System clock switch
* @{
*/
#define LL_RCC_SYS_CLKSOURCE_HSI RCC_CFGR_SW_HSI /*!< HSI selection as system clock */
#define LL_RCC_SYS_CLKSOURCE_HSE RCC_CFGR_SW_HSE /*!< HSE selection as system clock */
#define LL_RCC_SYS_CLKSOURCE_PLL RCC_CFGR_SW_PLL /*!< PLL selection as system clock */
/**
* @}
*/
/** @defgroup RCC_LL_EC_SYS_CLKSOURCE_STATUS System clock switch status
* @{
*/
#define LL_RCC_SYS_CLKSOURCE_STATUS_HSI RCC_CFGR_SWS_HSI /*!< HSI used as system clock */
#define LL_RCC_SYS_CLKSOURCE_STATUS_HSE RCC_CFGR_SWS_HSE /*!< HSE used as system clock */
#define LL_RCC_SYS_CLKSOURCE_STATUS_PLL RCC_CFGR_SWS_PLL /*!< PLL used as system clock */
/**
* @}
*/
/** @defgroup RCC_LL_EC_SYSCLK_DIV AHB prescaler
* @{
*/
#define LL_RCC_SYSCLK_DIV_1 RCC_CFGR_HPRE_DIV1 /*!< SYSCLK not divided */
#define LL_RCC_SYSCLK_DIV_2 RCC_CFGR_HPRE_DIV2 /*!< SYSCLK divided by 2 */
#define LL_RCC_SYSCLK_DIV_4 RCC_CFGR_HPRE_DIV4 /*!< SYSCLK divided by 4 */
#define LL_RCC_SYSCLK_DIV_8 RCC_CFGR_HPRE_DIV8 /*!< SYSCLK divided by 8 */
#define LL_RCC_SYSCLK_DIV_16 RCC_CFGR_HPRE_DIV16 /*!< SYSCLK divided by 16 */
#define LL_RCC_SYSCLK_DIV_64 RCC_CFGR_HPRE_DIV64 /*!< SYSCLK divided by 64 */
#define LL_RCC_SYSCLK_DIV_128 RCC_CFGR_HPRE_DIV128 /*!< SYSCLK divided by 128 */
#define LL_RCC_SYSCLK_DIV_256 RCC_CFGR_HPRE_DIV256 /*!< SYSCLK divided by 256 */
#define LL_RCC_SYSCLK_DIV_512 RCC_CFGR_HPRE_DIV512 /*!< SYSCLK divided by 512 */
/**
* @}
*/
/** @defgroup RCC_LL_EC_APB1_DIV APB low-speed prescaler (APB1)
* @{
*/
#define LL_RCC_APB1_DIV_1 RCC_CFGR_PPRE1_DIV1 /*!< HCLK not divided */
#define LL_RCC_APB1_DIV_2 RCC_CFGR_PPRE1_DIV2 /*!< HCLK divided by 2 */
#define LL_RCC_APB1_DIV_4 RCC_CFGR_PPRE1_DIV4 /*!< HCLK divided by 4 */
#define LL_RCC_APB1_DIV_8 RCC_CFGR_PPRE1_DIV8 /*!< HCLK divided by 8 */
#define LL_RCC_APB1_DIV_16 RCC_CFGR_PPRE1_DIV16 /*!< HCLK divided by 16 */
/**
* @}
*/
/** @defgroup RCC_LL_EC_APB2_DIV APB high-speed prescaler (APB2)
* @{
*/
#define LL_RCC_APB2_DIV_1 RCC_CFGR_PPRE2_DIV1 /*!< HCLK not divided */
#define LL_RCC_APB2_DIV_2 RCC_CFGR_PPRE2_DIV2 /*!< HCLK divided by 2 */
#define LL_RCC_APB2_DIV_4 RCC_CFGR_PPRE2_DIV4 /*!< HCLK divided by 4 */
#define LL_RCC_APB2_DIV_8 RCC_CFGR_PPRE2_DIV8 /*!< HCLK divided by 8 */
#define LL_RCC_APB2_DIV_16 RCC_CFGR_PPRE2_DIV16 /*!< HCLK divided by 16 */
/**
* @}
*/
/** @defgroup RCC_LL_EC_MCO1SOURCE MCO1 SOURCE selection
* @{
*/
#define LL_RCC_MCO1SOURCE_NOCLOCK RCC_CFGR_MCO_NOCLOCK /*!< MCO output disabled, no clock on MCO */
#define LL_RCC_MCO1SOURCE_SYSCLK RCC_CFGR_MCO_SYSCLK /*!< SYSCLK selection as MCO source */
#define LL_RCC_MCO1SOURCE_HSI RCC_CFGR_MCO_HSI /*!< HSI selection as MCO source */
#define LL_RCC_MCO1SOURCE_HSE RCC_CFGR_MCO_HSE /*!< HSE selection as MCO source */
#define LL_RCC_MCO1SOURCE_PLLCLK_DIV_2 RCC_CFGR_MCO_PLLCLK_DIV2 /*!< PLL clock divided by 2*/
#if defined(RCC_CFGR_MCO_PLL2CLK)
#define LL_RCC_MCO1SOURCE_PLL2CLK RCC_CFGR_MCO_PLL2CLK /*!< PLL2 clock selected as MCO source*/
#endif /* RCC_CFGR_MCO_PLL2CLK */
#if defined(RCC_CFGR_MCO_PLL3CLK_DIV2)
#define LL_RCC_MCO1SOURCE_PLLI2SCLK_DIV2 RCC_CFGR_MCO_PLL3CLK_DIV2 /*!< PLLI2S clock divided by 2 selected as MCO source*/
#endif /* RCC_CFGR_MCO_PLL3CLK_DIV2 */
#if defined(RCC_CFGR_MCO_EXT_HSE)
#define LL_RCC_MCO1SOURCE_EXT_HSE RCC_CFGR_MCO_EXT_HSE /*!< XT1 external 3-25 MHz oscillator clock selected as MCO source */
#endif /* RCC_CFGR_MCO_EXT_HSE */
#if defined(RCC_CFGR_MCO_PLL3CLK)
#define LL_RCC_MCO1SOURCE_PLLI2SCLK RCC_CFGR_MCO_PLL3CLK /*!< PLLI2S clock selected as MCO source */
#endif /* RCC_CFGR_MCO_PLL3CLK */
/**
* @}
*/
#if defined(USE_FULL_LL_DRIVER)
/** @defgroup RCC_LL_EC_PERIPH_FREQUENCY Peripheral clock frequency
* @{
*/
#define LL_RCC_PERIPH_FREQUENCY_NO 0x00000000U /*!< No clock enabled for the peripheral */
#define LL_RCC_PERIPH_FREQUENCY_NA 0xFFFFFFFFU /*!< Frequency cannot be provided as external clock */
/**
* @}
*/
#endif /* USE_FULL_LL_DRIVER */
#if defined(RCC_CFGR2_I2S2SRC)
/** @defgroup RCC_LL_EC_I2S2CLKSOURCE Peripheral I2S clock source selection
* @{
*/
#define LL_RCC_I2S2_CLKSOURCE_SYSCLK RCC_CFGR2_I2S2SRC /*!< System clock (SYSCLK) selected as I2S2 clock entry */
#define LL_RCC_I2S2_CLKSOURCE_PLLI2S_VCO (uint32_t)(RCC_CFGR2_I2S2SRC | (RCC_CFGR2_I2S2SRC >> 16U)) /*!< PLLI2S VCO clock selected as I2S2 clock entry */
#define LL_RCC_I2S3_CLKSOURCE_SYSCLK RCC_CFGR2_I2S3SRC /*!< System clock (SYSCLK) selected as I2S3 clock entry */
#define LL_RCC_I2S3_CLKSOURCE_PLLI2S_VCO (uint32_t)(RCC_CFGR2_I2S3SRC | (RCC_CFGR2_I2S3SRC >> 16U)) /*!< PLLI2S VCO clock selected as I2S3 clock entry */
/**
* @}
*/
#endif /* RCC_CFGR2_I2S2SRC */
#if defined(USB_OTG_FS) || defined(USB)
/** @defgroup RCC_LL_EC_USB_CLKSOURCE Peripheral USB clock source selection
* @{
*/
#if defined(RCC_CFGR_USBPRE)
#define LL_RCC_USB_CLKSOURCE_PLL RCC_CFGR_USBPRE /*!< PLL clock is not divided */
#define LL_RCC_USB_CLKSOURCE_PLL_DIV_1_5 0x00000000U /*!< PLL clock is divided by 1.5 */
#endif /*RCC_CFGR_USBPRE*/
#if defined(RCC_CFGR_OTGFSPRE)
#define LL_RCC_USB_CLKSOURCE_PLL_DIV_2 RCC_CFGR_OTGFSPRE /*!< PLL clock is divided by 2 */
#define LL_RCC_USB_CLKSOURCE_PLL_DIV_3 0x00000000U /*!< PLL clock is divided by 3 */
#endif /*RCC_CFGR_OTGFSPRE*/
/**
* @}
*/
#endif /* USB_OTG_FS || USB */
/** @defgroup RCC_LL_EC_ADC_CLKSOURCE_PCLK2 Peripheral ADC clock source selection
* @{
*/
#define LL_RCC_ADC_CLKSRC_PCLK2_DIV_2 RCC_CFGR_ADCPRE_DIV2 /*ADC prescaler PCLK2 divided by 2*/
#define LL_RCC_ADC_CLKSRC_PCLK2_DIV_4 RCC_CFGR_ADCPRE_DIV4 /*ADC prescaler PCLK2 divided by 4*/
#define LL_RCC_ADC_CLKSRC_PCLK2_DIV_6 RCC_CFGR_ADCPRE_DIV6 /*ADC prescaler PCLK2 divided by 6*/
#define LL_RCC_ADC_CLKSRC_PCLK2_DIV_8 RCC_CFGR_ADCPRE_DIV8 /*ADC prescaler PCLK2 divided by 8*/
/**
* @}
*/
#if defined(RCC_CFGR2_I2S2SRC)
/** @defgroup RCC_LL_EC_I2S2 Peripheral I2S get clock source
* @{
*/
#define LL_RCC_I2S2_CLKSOURCE RCC_CFGR2_I2S2SRC /*!< I2S2 Clock source selection */
#define LL_RCC_I2S3_CLKSOURCE RCC_CFGR2_I2S3SRC /*!< I2S3 Clock source selection */
/**
* @}
*/
#endif /* RCC_CFGR2_I2S2SRC */
#if defined(USB_OTG_FS) || defined(USB)
/** @defgroup RCC_LL_EC_USB Peripheral USB get clock source
* @{
*/
#define LL_RCC_USB_CLKSOURCE 0x00400000U /*!< USB Clock source selection */
/**
* @}
*/
#endif /* USB_OTG_FS || USB */
/** @defgroup RCC_LL_EC_ADC Peripheral ADC get clock source
* @{
*/
#define LL_RCC_ADC_CLKSOURCE RCC_CFGR_ADCPRE /*!< ADC Clock source selection */
/**
* @}
*/
/** @defgroup RCC_LL_EC_RTC_CLKSOURCE RTC clock source selection
* @{
*/
#define LL_RCC_RTC_CLKSOURCE_NONE 0x00000000U /*!< No clock used as RTC clock */
#define LL_RCC_RTC_CLKSOURCE_LSE RCC_BDCR_RTCSEL_0 /*!< LSE oscillator clock used as RTC clock */
#define LL_RCC_RTC_CLKSOURCE_LSI RCC_BDCR_RTCSEL_1 /*!< LSI oscillator clock used as RTC clock */
#define LL_RCC_RTC_CLKSOURCE_HSE_DIV128 RCC_BDCR_RTCSEL /*!< HSE oscillator clock divided by 128 used as RTC clock */
/**
* @}
*/
/** @defgroup RCC_LL_EC_PLL_MUL PLL Multiplicator factor
* @{
*/
#if defined(RCC_CFGR_PLLMULL2)
#define LL_RCC_PLL_MUL_2 RCC_CFGR_PLLMULL2 /*!< PLL input clock*2 */
#endif /*RCC_CFGR_PLLMULL2*/
#if defined(RCC_CFGR_PLLMULL3)
#define LL_RCC_PLL_MUL_3 RCC_CFGR_PLLMULL3 /*!< PLL input clock*3 */
#endif /*RCC_CFGR_PLLMULL3*/
#define LL_RCC_PLL_MUL_4 RCC_CFGR_PLLMULL4 /*!< PLL input clock*4 */
#define LL_RCC_PLL_MUL_5 RCC_CFGR_PLLMULL5 /*!< PLL input clock*5 */
#define LL_RCC_PLL_MUL_6 RCC_CFGR_PLLMULL6 /*!< PLL input clock*6 */
#define LL_RCC_PLL_MUL_7 RCC_CFGR_PLLMULL7 /*!< PLL input clock*7 */
#define LL_RCC_PLL_MUL_8 RCC_CFGR_PLLMULL8 /*!< PLL input clock*8 */
#define LL_RCC_PLL_MUL_9 RCC_CFGR_PLLMULL9 /*!< PLL input clock*9 */
#if defined(RCC_CFGR_PLLMULL6_5)
#define LL_RCC_PLL_MUL_6_5 RCC_CFGR_PLLMULL6_5 /*!< PLL input clock*6 */
#else
#define LL_RCC_PLL_MUL_10 RCC_CFGR_PLLMULL10 /*!< PLL input clock*10 */
#define LL_RCC_PLL_MUL_11 RCC_CFGR_PLLMULL11 /*!< PLL input clock*11 */
#define LL_RCC_PLL_MUL_12 RCC_CFGR_PLLMULL12 /*!< PLL input clock*12 */
#define LL_RCC_PLL_MUL_13 RCC_CFGR_PLLMULL13 /*!< PLL input clock*13 */
#define LL_RCC_PLL_MUL_14 RCC_CFGR_PLLMULL14 /*!< PLL input clock*14 */
#define LL_RCC_PLL_MUL_15 RCC_CFGR_PLLMULL15 /*!< PLL input clock*15 */
#define LL_RCC_PLL_MUL_16 RCC_CFGR_PLLMULL16 /*!< PLL input clock*16 */
#endif /*RCC_CFGR_PLLMULL6_5*/
/**
* @}
*/
/** @defgroup RCC_LL_EC_PLLSOURCE PLL SOURCE
* @{
*/
#define LL_RCC_PLLSOURCE_HSI_DIV_2 0x00000000U /*!< HSI clock divided by 2 selected as PLL entry clock source */
#define LL_RCC_PLLSOURCE_HSE RCC_CFGR_PLLSRC /*!< HSE/PREDIV1 clock selected as PLL entry clock source */
#if defined(RCC_CFGR2_PREDIV1SRC)
#define LL_RCC_PLLSOURCE_PLL2 (RCC_CFGR_PLLSRC | RCC_CFGR2_PREDIV1SRC << 4U) /*!< PLL2/PREDIV1 clock selected as PLL entry clock source */
#endif /*RCC_CFGR2_PREDIV1SRC*/
#if defined(RCC_CFGR2_PREDIV1)
#define LL_RCC_PLLSOURCE_HSE_DIV_1 (RCC_CFGR_PLLSRC | RCC_CFGR2_PREDIV1_DIV1) /*!< HSE/1 clock selected as PLL entry clock source */
#define LL_RCC_PLLSOURCE_HSE_DIV_2 (RCC_CFGR_PLLSRC | RCC_CFGR2_PREDIV1_DIV2) /*!< HSE/2 clock selected as PLL entry clock source */
#define LL_RCC_PLLSOURCE_HSE_DIV_3 (RCC_CFGR_PLLSRC | RCC_CFGR2_PREDIV1_DIV3) /*!< HSE/3 clock selected as PLL entry clock source */
#define LL_RCC_PLLSOURCE_HSE_DIV_4 (RCC_CFGR_PLLSRC | RCC_CFGR2_PREDIV1_DIV4) /*!< HSE/4 clock selected as PLL entry clock source */
#define LL_RCC_PLLSOURCE_HSE_DIV_5 (RCC_CFGR_PLLSRC | RCC_CFGR2_PREDIV1_DIV5) /*!< HSE/5 clock selected as PLL entry clock source */
#define LL_RCC_PLLSOURCE_HSE_DIV_6 (RCC_CFGR_PLLSRC | RCC_CFGR2_PREDIV1_DIV6) /*!< HSE/6 clock selected as PLL entry clock source */
#define LL_RCC_PLLSOURCE_HSE_DIV_7 (RCC_CFGR_PLLSRC | RCC_CFGR2_PREDIV1_DIV7) /*!< HSE/7 clock selected as PLL entry clock source */
#define LL_RCC_PLLSOURCE_HSE_DIV_8 (RCC_CFGR_PLLSRC | RCC_CFGR2_PREDIV1_DIV8) /*!< HSE/8 clock selected as PLL entry clock source */
#define LL_RCC_PLLSOURCE_HSE_DIV_9 (RCC_CFGR_PLLSRC | RCC_CFGR2_PREDIV1_DIV9) /*!< HSE/9 clock selected as PLL entry clock source */
#define LL_RCC_PLLSOURCE_HSE_DIV_10 (RCC_CFGR_PLLSRC | RCC_CFGR2_PREDIV1_DIV10) /*!< HSE/10 clock selected as PLL entry clock source */
#define LL_RCC_PLLSOURCE_HSE_DIV_11 (RCC_CFGR_PLLSRC | RCC_CFGR2_PREDIV1_DIV11) /*!< HSE/11 clock selected as PLL entry clock source */
#define LL_RCC_PLLSOURCE_HSE_DIV_12 (RCC_CFGR_PLLSRC | RCC_CFGR2_PREDIV1_DIV12) /*!< HSE/12 clock selected as PLL entry clock source */
#define LL_RCC_PLLSOURCE_HSE_DIV_13 (RCC_CFGR_PLLSRC | RCC_CFGR2_PREDIV1_DIV13) /*!< HSE/13 clock selected as PLL entry clock source */
#define LL_RCC_PLLSOURCE_HSE_DIV_14 (RCC_CFGR_PLLSRC | RCC_CFGR2_PREDIV1_DIV14) /*!< HSE/14 clock selected as PLL entry clock source */
#define LL_RCC_PLLSOURCE_HSE_DIV_15 (RCC_CFGR_PLLSRC | RCC_CFGR2_PREDIV1_DIV15) /*!< HSE/15 clock selected as PLL entry clock source */
#define LL_RCC_PLLSOURCE_HSE_DIV_16 (RCC_CFGR_PLLSRC | RCC_CFGR2_PREDIV1_DIV16) /*!< HSE/16 clock selected as PLL entry clock source */
#if defined(RCC_CFGR2_PREDIV1SRC)
#define LL_RCC_PLLSOURCE_PLL2_DIV_1 (RCC_CFGR_PLLSRC | RCC_CFGR2_PREDIV1_DIV1 | RCC_CFGR2_PREDIV1SRC << 4U) /*!< PLL2/1 clock selected as PLL entry clock source */
#define LL_RCC_PLLSOURCE_PLL2_DIV_2 (RCC_CFGR_PLLSRC | RCC_CFGR2_PREDIV1_DIV2 | RCC_CFGR2_PREDIV1SRC << 4U) /*!< PLL2/2 clock selected as PLL entry clock source */
#define LL_RCC_PLLSOURCE_PLL2_DIV_3 (RCC_CFGR_PLLSRC | RCC_CFGR2_PREDIV1_DIV3 | RCC_CFGR2_PREDIV1SRC << 4U) /*!< PLL2/3 clock selected as PLL entry clock source */
#define LL_RCC_PLLSOURCE_PLL2_DIV_4 (RCC_CFGR_PLLSRC | RCC_CFGR2_PREDIV1_DIV4 | RCC_CFGR2_PREDIV1SRC << 4U) /*!< PLL2/4 clock selected as PLL entry clock source */
#define LL_RCC_PLLSOURCE_PLL2_DIV_5 (RCC_CFGR_PLLSRC | RCC_CFGR2_PREDIV1_DIV5 | RCC_CFGR2_PREDIV1SRC << 4U) /*!< PLL2/5 clock selected as PLL entry clock source */
#define LL_RCC_PLLSOURCE_PLL2_DIV_6 (RCC_CFGR_PLLSRC | RCC_CFGR2_PREDIV1_DIV6 | RCC_CFGR2_PREDIV1SRC << 4U) /*!< PLL2/6 clock selected as PLL entry clock source */
#define LL_RCC_PLLSOURCE_PLL2_DIV_7 (RCC_CFGR_PLLSRC | RCC_CFGR2_PREDIV1_DIV7 | RCC_CFGR2_PREDIV1SRC << 4U) /*!< PLL2/7 clock selected as PLL entry clock source */
#define LL_RCC_PLLSOURCE_PLL2_DIV_8 (RCC_CFGR_PLLSRC | RCC_CFGR2_PREDIV1_DIV8 | RCC_CFGR2_PREDIV1SRC << 4U) /*!< PLL2/8 clock selected as PLL entry clock source */
#define LL_RCC_PLLSOURCE_PLL2_DIV_9 (RCC_CFGR_PLLSRC | RCC_CFGR2_PREDIV1_DIV9 | RCC_CFGR2_PREDIV1SRC << 4U) /*!< PLL2/9 clock selected as PLL entry clock source */
#define LL_RCC_PLLSOURCE_PLL2_DIV_10 (RCC_CFGR_PLLSRC | RCC_CFGR2_PREDIV1_DIV10 | RCC_CFGR2_PREDIV1SRC << 4U) /*!< PLL2/10 clock selected as PLL entry clock source */
#define LL_RCC_PLLSOURCE_PLL2_DIV_11 (RCC_CFGR_PLLSRC | RCC_CFGR2_PREDIV1_DIV11 | RCC_CFGR2_PREDIV1SRC << 4U) /*!< PLL2/11 clock selected as PLL entry clock source */
#define LL_RCC_PLLSOURCE_PLL2_DIV_12 (RCC_CFGR_PLLSRC | RCC_CFGR2_PREDIV1_DIV12 | RCC_CFGR2_PREDIV1SRC << 4U) /*!< PLL2/12 clock selected as PLL entry clock source */
#define LL_RCC_PLLSOURCE_PLL2_DIV_13 (RCC_CFGR_PLLSRC | RCC_CFGR2_PREDIV1_DIV13 | RCC_CFGR2_PREDIV1SRC << 4U) /*!< PLL2/13 clock selected as PLL entry clock source */
#define LL_RCC_PLLSOURCE_PLL2_DIV_14 (RCC_CFGR_PLLSRC | RCC_CFGR2_PREDIV1_DIV14 | RCC_CFGR2_PREDIV1SRC << 4U) /*!< PLL2/14 clock selected as PLL entry clock source */
#define LL_RCC_PLLSOURCE_PLL2_DIV_15 (RCC_CFGR_PLLSRC | RCC_CFGR2_PREDIV1_DIV15 | RCC_CFGR2_PREDIV1SRC << 4U) /*!< PLL2/15 clock selected as PLL entry clock source */
#define LL_RCC_PLLSOURCE_PLL2_DIV_16 (RCC_CFGR_PLLSRC | RCC_CFGR2_PREDIV1_DIV16 | RCC_CFGR2_PREDIV1SRC << 4U) /*!< PLL2/16 clock selected as PLL entry clock source */
#endif /*RCC_CFGR2_PREDIV1SRC*/
#else
#define LL_RCC_PLLSOURCE_HSE_DIV_1 (RCC_CFGR_PLLSRC | 0x00000000U) /*!< HSE/1 clock selected as PLL entry clock source */
#define LL_RCC_PLLSOURCE_HSE_DIV_2 (RCC_CFGR_PLLSRC | RCC_CFGR_PLLXTPRE) /*!< HSE/2 clock selected as PLL entry clock source */
#endif /*RCC_CFGR2_PREDIV1*/
/**
* @}
*/
/** @defgroup RCC_LL_EC_PREDIV_DIV PREDIV Division factor
* @{
*/
#if defined(RCC_CFGR2_PREDIV1)
#define LL_RCC_PREDIV_DIV_1 RCC_CFGR2_PREDIV1_DIV1 /*!< PREDIV1 input clock not divided */
#define LL_RCC_PREDIV_DIV_2 RCC_CFGR2_PREDIV1_DIV2 /*!< PREDIV1 input clock divided by 2 */
#define LL_RCC_PREDIV_DIV_3 RCC_CFGR2_PREDIV1_DIV3 /*!< PREDIV1 input clock divided by 3 */
#define LL_RCC_PREDIV_DIV_4 RCC_CFGR2_PREDIV1_DIV4 /*!< PREDIV1 input clock divided by 4 */
#define LL_RCC_PREDIV_DIV_5 RCC_CFGR2_PREDIV1_DIV5 /*!< PREDIV1 input clock divided by 5 */
#define LL_RCC_PREDIV_DIV_6 RCC_CFGR2_PREDIV1_DIV6 /*!< PREDIV1 input clock divided by 6 */
#define LL_RCC_PREDIV_DIV_7 RCC_CFGR2_PREDIV1_DIV7 /*!< PREDIV1 input clock divided by 7 */
#define LL_RCC_PREDIV_DIV_8 RCC_CFGR2_PREDIV1_DIV8 /*!< PREDIV1 input clock divided by 8 */
#define LL_RCC_PREDIV_DIV_9 RCC_CFGR2_PREDIV1_DIV9 /*!< PREDIV1 input clock divided by 9 */
#define LL_RCC_PREDIV_DIV_10 RCC_CFGR2_PREDIV1_DIV10 /*!< PREDIV1 input clock divided by 10 */
#define LL_RCC_PREDIV_DIV_11 RCC_CFGR2_PREDIV1_DIV11 /*!< PREDIV1 input clock divided by 11 */
#define LL_RCC_PREDIV_DIV_12 RCC_CFGR2_PREDIV1_DIV12 /*!< PREDIV1 input clock divided by 12 */
#define LL_RCC_PREDIV_DIV_13 RCC_CFGR2_PREDIV1_DIV13 /*!< PREDIV1 input clock divided by 13 */
#define LL_RCC_PREDIV_DIV_14 RCC_CFGR2_PREDIV1_DIV14 /*!< PREDIV1 input clock divided by 14 */
#define LL_RCC_PREDIV_DIV_15 RCC_CFGR2_PREDIV1_DIV15 /*!< PREDIV1 input clock divided by 15 */
#define LL_RCC_PREDIV_DIV_16 RCC_CFGR2_PREDIV1_DIV16 /*!< PREDIV1 input clock divided by 16 */
#else
#define LL_RCC_PREDIV_DIV_1 0x00000000U /*!< HSE divider clock clock not divided */
#define LL_RCC_PREDIV_DIV_2 RCC_CFGR_PLLXTPRE /*!< HSE divider clock divided by 2 for PLL entry */
#endif /*RCC_CFGR2_PREDIV1*/
/**
* @}
*/
#if defined(RCC_PLLI2S_SUPPORT)
/** @defgroup RCC_LL_EC_PLLI2S_MUL PLLI2S MUL
* @{
*/
#define LL_RCC_PLLI2S_MUL_8 RCC_CFGR2_PLL3MUL8 /*!< PLLI2S input clock * 8 */
#define LL_RCC_PLLI2S_MUL_9 RCC_CFGR2_PLL3MUL9 /*!< PLLI2S input clock * 9 */
#define LL_RCC_PLLI2S_MUL_10 RCC_CFGR2_PLL3MUL10 /*!< PLLI2S input clock * 10 */
#define LL_RCC_PLLI2S_MUL_11 RCC_CFGR2_PLL3MUL11 /*!< PLLI2S input clock * 11 */
#define LL_RCC_PLLI2S_MUL_12 RCC_CFGR2_PLL3MUL12 /*!< PLLI2S input clock * 12 */
#define LL_RCC_PLLI2S_MUL_13 RCC_CFGR2_PLL3MUL13 /*!< PLLI2S input clock * 13 */
#define LL_RCC_PLLI2S_MUL_14 RCC_CFGR2_PLL3MUL14 /*!< PLLI2S input clock * 14 */
#define LL_RCC_PLLI2S_MUL_16 RCC_CFGR2_PLL3MUL16 /*!< PLLI2S input clock * 16 */
#define LL_RCC_PLLI2S_MUL_20 RCC_CFGR2_PLL3MUL20 /*!< PLLI2S input clock * 20 */
/**
* @}
*/
#endif /* RCC_PLLI2S_SUPPORT */
#if defined(RCC_PLL2_SUPPORT)
/** @defgroup RCC_LL_EC_PLL2_MUL PLL2 MUL
* @{
*/
#define LL_RCC_PLL2_MUL_8 RCC_CFGR2_PLL2MUL8 /*!< PLL2 input clock * 8 */
#define LL_RCC_PLL2_MUL_9 RCC_CFGR2_PLL2MUL9 /*!< PLL2 input clock * 9 */
#define LL_RCC_PLL2_MUL_10 RCC_CFGR2_PLL2MUL10 /*!< PLL2 input clock * 10 */
#define LL_RCC_PLL2_MUL_11 RCC_CFGR2_PLL2MUL11 /*!< PLL2 input clock * 11 */
#define LL_RCC_PLL2_MUL_12 RCC_CFGR2_PLL2MUL12 /*!< PLL2 input clock * 12 */
#define LL_RCC_PLL2_MUL_13 RCC_CFGR2_PLL2MUL13 /*!< PLL2 input clock * 13 */
#define LL_RCC_PLL2_MUL_14 RCC_CFGR2_PLL2MUL14 /*!< PLL2 input clock * 14 */
#define LL_RCC_PLL2_MUL_16 RCC_CFGR2_PLL2MUL16 /*!< PLL2 input clock * 16 */
#define LL_RCC_PLL2_MUL_20 RCC_CFGR2_PLL2MUL20 /*!< PLL2 input clock * 20 */
/**
* @}
*/
#endif /* RCC_PLL2_SUPPORT */
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/** @defgroup RCC_LL_Exported_Macros RCC Exported Macros
* @{
*/
/** @defgroup RCC_LL_EM_WRITE_READ Common Write and read registers Macros
* @{
*/
/**
* @brief Write a value in RCC register
* @param __REG__ Register to be written
* @param __VALUE__ Value to be written in the register
* @retval None
*/
#define LL_RCC_WriteReg(__REG__, __VALUE__) WRITE_REG(RCC->__REG__, (__VALUE__))
/**
* @brief Read a value in RCC register
* @param __REG__ Register to be read
* @retval Register value
*/
#define LL_RCC_ReadReg(__REG__) READ_REG(RCC->__REG__)
/**
* @}
*/
/** @defgroup RCC_LL_EM_CALC_FREQ Calculate frequencies
* @{
*/
#if defined(RCC_CFGR_PLLMULL6_5)
/**
* @brief Helper macro to calculate the PLLCLK frequency
* @note ex: @ref __LL_RCC_CALC_PLLCLK_FREQ (HSE_VALUE / (@ref LL_RCC_PLL_GetPrediv () + 1), @ref LL_RCC_PLL_GetMultiplicator());
* @param __INPUTFREQ__ PLL Input frequency (based on HSE div Prediv1 / HSI div 2 / PLL2 div Prediv1)
* @param __PLLMUL__: This parameter can be one of the following values:
* @arg @ref LL_RCC_PLL_MUL_4
* @arg @ref LL_RCC_PLL_MUL_5
* @arg @ref LL_RCC_PLL_MUL_6
* @arg @ref LL_RCC_PLL_MUL_7
* @arg @ref LL_RCC_PLL_MUL_8
* @arg @ref LL_RCC_PLL_MUL_9
* @arg @ref LL_RCC_PLL_MUL_6_5
* @retval PLL clock frequency (in Hz)
*/
#define __LL_RCC_CALC_PLLCLK_FREQ(__INPUTFREQ__, __PLLMUL__) \
(((__PLLMUL__) != RCC_CFGR_PLLMULL6_5) ? \
((__INPUTFREQ__) * ((((__PLLMUL__) & RCC_CFGR_PLLMULL) >> RCC_CFGR_PLLMULL_Pos) + 2U)) :\
(((__INPUTFREQ__) * 13U) / 2U))
#else
/**
* @brief Helper macro to calculate the PLLCLK frequency
* @note ex: @ref __LL_RCC_CALC_PLLCLK_FREQ (HSE_VALUE / (@ref LL_RCC_PLL_GetPrediv () + 1), @ref LL_RCC_PLL_GetMultiplicator ());
* @param __INPUTFREQ__ PLL Input frequency (based on HSE div Prediv1 or div 2 / HSI div 2)
* @param __PLLMUL__: This parameter can be one of the following values:
* @arg @ref LL_RCC_PLL_MUL_2
* @arg @ref LL_RCC_PLL_MUL_3
* @arg @ref LL_RCC_PLL_MUL_4
* @arg @ref LL_RCC_PLL_MUL_5
* @arg @ref LL_RCC_PLL_MUL_6
* @arg @ref LL_RCC_PLL_MUL_7
* @arg @ref LL_RCC_PLL_MUL_8
* @arg @ref LL_RCC_PLL_MUL_9
* @arg @ref LL_RCC_PLL_MUL_10
* @arg @ref LL_RCC_PLL_MUL_11
* @arg @ref LL_RCC_PLL_MUL_12
* @arg @ref LL_RCC_PLL_MUL_13
* @arg @ref LL_RCC_PLL_MUL_14
* @arg @ref LL_RCC_PLL_MUL_15
* @arg @ref LL_RCC_PLL_MUL_16
* @retval PLL clock frequency (in Hz)
*/
#define __LL_RCC_CALC_PLLCLK_FREQ(__INPUTFREQ__, __PLLMUL__) ((__INPUTFREQ__) * (((__PLLMUL__) >> RCC_CFGR_PLLMULL_Pos) + 2U))
#endif /* RCC_CFGR_PLLMULL6_5 */
#if defined(RCC_PLLI2S_SUPPORT)
/**
* @brief Helper macro to calculate the PLLI2S frequency
* @note ex: @ref __LL_RCC_CALC_PLLI2SCLK_FREQ (HSE_VALUE, @ref LL_RCC_PLLI2S_GetMultiplicator (), @ref LL_RCC_HSE_GetPrediv2 ());
* @param __INPUTFREQ__ PLLI2S Input frequency (based on HSE value)
* @param __PLLI2SMUL__: This parameter can be one of the following values:
* @arg @ref LL_RCC_PLLI2S_MUL_8
* @arg @ref LL_RCC_PLLI2S_MUL_9
* @arg @ref LL_RCC_PLLI2S_MUL_10
* @arg @ref LL_RCC_PLLI2S_MUL_11
* @arg @ref LL_RCC_PLLI2S_MUL_12
* @arg @ref LL_RCC_PLLI2S_MUL_13
* @arg @ref LL_RCC_PLLI2S_MUL_14
* @arg @ref LL_RCC_PLLI2S_MUL_16
* @arg @ref LL_RCC_PLLI2S_MUL_20
* @param __PLLI2SDIV__: This parameter can be one of the following values:
* @arg @ref LL_RCC_HSE_PREDIV2_DIV_1
* @arg @ref LL_RCC_HSE_PREDIV2_DIV_2
* @arg @ref LL_RCC_HSE_PREDIV2_DIV_3
* @arg @ref LL_RCC_HSE_PREDIV2_DIV_4
* @arg @ref LL_RCC_HSE_PREDIV2_DIV_5
* @arg @ref LL_RCC_HSE_PREDIV2_DIV_6
* @arg @ref LL_RCC_HSE_PREDIV2_DIV_7
* @arg @ref LL_RCC_HSE_PREDIV2_DIV_8
* @arg @ref LL_RCC_HSE_PREDIV2_DIV_9
* @arg @ref LL_RCC_HSE_PREDIV2_DIV_10
* @arg @ref LL_RCC_HSE_PREDIV2_DIV_11
* @arg @ref LL_RCC_HSE_PREDIV2_DIV_12
* @arg @ref LL_RCC_HSE_PREDIV2_DIV_13
* @arg @ref LL_RCC_HSE_PREDIV2_DIV_14
* @arg @ref LL_RCC_HSE_PREDIV2_DIV_15
* @arg @ref LL_RCC_HSE_PREDIV2_DIV_16
* @retval PLLI2S clock frequency (in Hz)
*/
#define __LL_RCC_CALC_PLLI2SCLK_FREQ(__INPUTFREQ__, __PLLI2SMUL__, __PLLI2SDIV__) (((__INPUTFREQ__) * (((__PLLI2SMUL__) >> RCC_CFGR2_PLL3MUL_Pos) + 2U)) / (((__PLLI2SDIV__) >> RCC_CFGR2_PREDIV2_Pos) + 1U))
#endif /* RCC_PLLI2S_SUPPORT */
#if defined(RCC_PLL2_SUPPORT)
/**
* @brief Helper macro to calculate the PLL2 frequency
* @note ex: @ref __LL_RCC_CALC_PLL2CLK_FREQ (HSE_VALUE, @ref LL_RCC_PLL2_GetMultiplicator (), @ref LL_RCC_HSE_GetPrediv2 ());
* @param __INPUTFREQ__ PLL2 Input frequency (based on HSE value)
* @param __PLL2MUL__: This parameter can be one of the following values:
* @arg @ref LL_RCC_PLL2_MUL_8
* @arg @ref LL_RCC_PLL2_MUL_9
* @arg @ref LL_RCC_PLL2_MUL_10
* @arg @ref LL_RCC_PLL2_MUL_11
* @arg @ref LL_RCC_PLL2_MUL_12
* @arg @ref LL_RCC_PLL2_MUL_13
* @arg @ref LL_RCC_PLL2_MUL_14
* @arg @ref LL_RCC_PLL2_MUL_16
* @arg @ref LL_RCC_PLL2_MUL_20
* @param __PLL2DIV__: This parameter can be one of the following values:
* @arg @ref LL_RCC_HSE_PREDIV2_DIV_1
* @arg @ref LL_RCC_HSE_PREDIV2_DIV_2
* @arg @ref LL_RCC_HSE_PREDIV2_DIV_3
* @arg @ref LL_RCC_HSE_PREDIV2_DIV_4
* @arg @ref LL_RCC_HSE_PREDIV2_DIV_5
* @arg @ref LL_RCC_HSE_PREDIV2_DIV_6
* @arg @ref LL_RCC_HSE_PREDIV2_DIV_7
* @arg @ref LL_RCC_HSE_PREDIV2_DIV_8
* @arg @ref LL_RCC_HSE_PREDIV2_DIV_9
* @arg @ref LL_RCC_HSE_PREDIV2_DIV_10
* @arg @ref LL_RCC_HSE_PREDIV2_DIV_11
* @arg @ref LL_RCC_HSE_PREDIV2_DIV_12
* @arg @ref LL_RCC_HSE_PREDIV2_DIV_13
* @arg @ref LL_RCC_HSE_PREDIV2_DIV_14
* @arg @ref LL_RCC_HSE_PREDIV2_DIV_15
* @arg @ref LL_RCC_HSE_PREDIV2_DIV_16
* @retval PLL2 clock frequency (in Hz)
*/
#define __LL_RCC_CALC_PLL2CLK_FREQ(__INPUTFREQ__, __PLL2MUL__, __PLL2DIV__) (((__INPUTFREQ__) * (((__PLL2MUL__) >> RCC_CFGR2_PLL2MUL_Pos) + 2U)) / (((__PLL2DIV__) >> RCC_CFGR2_PREDIV2_Pos) + 1U))
#endif /* RCC_PLL2_SUPPORT */
/**
* @brief Helper macro to calculate the HCLK frequency
* @note: __AHBPRESCALER__ be retrieved by @ref LL_RCC_GetAHBPrescaler
* ex: __LL_RCC_CALC_HCLK_FREQ(LL_RCC_GetAHBPrescaler())
* @param __SYSCLKFREQ__ SYSCLK frequency (based on HSE/HSI/PLLCLK)
* @param __AHBPRESCALER__: This parameter can be one of the following values:
* @arg @ref LL_RCC_SYSCLK_DIV_1
* @arg @ref LL_RCC_SYSCLK_DIV_2
* @arg @ref LL_RCC_SYSCLK_DIV_4
* @arg @ref LL_RCC_SYSCLK_DIV_8
* @arg @ref LL_RCC_SYSCLK_DIV_16
* @arg @ref LL_RCC_SYSCLK_DIV_64
* @arg @ref LL_RCC_SYSCLK_DIV_128
* @arg @ref LL_RCC_SYSCLK_DIV_256
* @arg @ref LL_RCC_SYSCLK_DIV_512
* @retval HCLK clock frequency (in Hz)
*/
#define __LL_RCC_CALC_HCLK_FREQ(__SYSCLKFREQ__, __AHBPRESCALER__) ((__SYSCLKFREQ__) >> AHBPrescTable[((__AHBPRESCALER__) & RCC_CFGR_HPRE) >> RCC_CFGR_HPRE_Pos])
/**
* @brief Helper macro to calculate the PCLK1 frequency (ABP1)
* @note: __APB1PRESCALER__ be retrieved by @ref LL_RCC_GetAPB1Prescaler
* ex: __LL_RCC_CALC_PCLK1_FREQ(LL_RCC_GetAPB1Prescaler())
* @param __HCLKFREQ__ HCLK frequency
* @param __APB1PRESCALER__: This parameter can be one of the following values:
* @arg @ref LL_RCC_APB1_DIV_1
* @arg @ref LL_RCC_APB1_DIV_2
* @arg @ref LL_RCC_APB1_DIV_4
* @arg @ref LL_RCC_APB1_DIV_8
* @arg @ref LL_RCC_APB1_DIV_16
* @retval PCLK1 clock frequency (in Hz)
*/
#define __LL_RCC_CALC_PCLK1_FREQ(__HCLKFREQ__, __APB1PRESCALER__) ((__HCLKFREQ__) >> APBPrescTable[(__APB1PRESCALER__) >> RCC_CFGR_PPRE1_Pos])
/**
* @brief Helper macro to calculate the PCLK2 frequency (ABP2)
* @note: __APB2PRESCALER__ be retrieved by @ref LL_RCC_GetAPB2Prescaler
* ex: __LL_RCC_CALC_PCLK2_FREQ(LL_RCC_GetAPB2Prescaler())
* @param __HCLKFREQ__ HCLK frequency
* @param __APB2PRESCALER__: This parameter can be one of the following values:
* @arg @ref LL_RCC_APB2_DIV_1
* @arg @ref LL_RCC_APB2_DIV_2
* @arg @ref LL_RCC_APB2_DIV_4
* @arg @ref LL_RCC_APB2_DIV_8
* @arg @ref LL_RCC_APB2_DIV_16
* @retval PCLK2 clock frequency (in Hz)
*/
#define __LL_RCC_CALC_PCLK2_FREQ(__HCLKFREQ__, __APB2PRESCALER__) ((__HCLKFREQ__) >> APBPrescTable[(__APB2PRESCALER__) >> RCC_CFGR_PPRE2_Pos])
/**
* @}
*/
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup RCC_LL_Exported_Functions RCC Exported Functions
* @{
*/
/** @defgroup RCC_LL_EF_HSE HSE
* @{
*/
/**
* @brief Enable the Clock Security System.
* @rmtoll CR CSSON LL_RCC_HSE_EnableCSS
* @retval None
*/
__STATIC_INLINE void LL_RCC_HSE_EnableCSS(void)
{
SET_BIT(RCC->CR, RCC_CR_CSSON);
}
/**
* @brief Enable HSE external oscillator (HSE Bypass)
* @rmtoll CR HSEBYP LL_RCC_HSE_EnableBypass
* @retval None
*/
__STATIC_INLINE void LL_RCC_HSE_EnableBypass(void)
{
SET_BIT(RCC->CR, RCC_CR_HSEBYP);
}
/**
* @brief Disable HSE external oscillator (HSE Bypass)
* @rmtoll CR HSEBYP LL_RCC_HSE_DisableBypass
* @retval None
*/
__STATIC_INLINE void LL_RCC_HSE_DisableBypass(void)
{
CLEAR_BIT(RCC->CR, RCC_CR_HSEBYP);
}
/**
* @brief Enable HSE crystal oscillator (HSE ON)
* @rmtoll CR HSEON LL_RCC_HSE_Enable
* @retval None
*/
__STATIC_INLINE void LL_RCC_HSE_Enable(void)
{
SET_BIT(RCC->CR, RCC_CR_HSEON);
}
/**
* @brief Disable HSE crystal oscillator (HSE ON)
* @rmtoll CR HSEON LL_RCC_HSE_Disable
* @retval None
*/
__STATIC_INLINE void LL_RCC_HSE_Disable(void)
{
CLEAR_BIT(RCC->CR, RCC_CR_HSEON);
}
/**
* @brief Check if HSE oscillator Ready
* @rmtoll CR HSERDY LL_RCC_HSE_IsReady
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_HSE_IsReady(void)
{
return (READ_BIT(RCC->CR, RCC_CR_HSERDY) == (RCC_CR_HSERDY));
}
#if defined(RCC_CFGR2_PREDIV2)
/**
* @brief Get PREDIV2 division factor
* @rmtoll CFGR2 PREDIV2 LL_RCC_HSE_GetPrediv2
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_HSE_PREDIV2_DIV_1
* @arg @ref LL_RCC_HSE_PREDIV2_DIV_2
* @arg @ref LL_RCC_HSE_PREDIV2_DIV_3
* @arg @ref LL_RCC_HSE_PREDIV2_DIV_4
* @arg @ref LL_RCC_HSE_PREDIV2_DIV_5
* @arg @ref LL_RCC_HSE_PREDIV2_DIV_6
* @arg @ref LL_RCC_HSE_PREDIV2_DIV_7
* @arg @ref LL_RCC_HSE_PREDIV2_DIV_8
* @arg @ref LL_RCC_HSE_PREDIV2_DIV_9
* @arg @ref LL_RCC_HSE_PREDIV2_DIV_10
* @arg @ref LL_RCC_HSE_PREDIV2_DIV_11
* @arg @ref LL_RCC_HSE_PREDIV2_DIV_12
* @arg @ref LL_RCC_HSE_PREDIV2_DIV_13
* @arg @ref LL_RCC_HSE_PREDIV2_DIV_14
* @arg @ref LL_RCC_HSE_PREDIV2_DIV_15
* @arg @ref LL_RCC_HSE_PREDIV2_DIV_16
*/
__STATIC_INLINE uint32_t LL_RCC_HSE_GetPrediv2(void)
{
return (uint32_t)(READ_BIT(RCC->CFGR2, RCC_CFGR2_PREDIV2));
}
#endif /* RCC_CFGR2_PREDIV2 */
/**
* @}
*/
/** @defgroup RCC_LL_EF_HSI HSI
* @{
*/
/**
* @brief Enable HSI oscillator
* @rmtoll CR HSION LL_RCC_HSI_Enable
* @retval None
*/
__STATIC_INLINE void LL_RCC_HSI_Enable(void)
{
SET_BIT(RCC->CR, RCC_CR_HSION);
}
/**
* @brief Disable HSI oscillator
* @rmtoll CR HSION LL_RCC_HSI_Disable
* @retval None
*/
__STATIC_INLINE void LL_RCC_HSI_Disable(void)
{
CLEAR_BIT(RCC->CR, RCC_CR_HSION);
}
/**
* @brief Check if HSI clock is ready
* @rmtoll CR HSIRDY LL_RCC_HSI_IsReady
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_HSI_IsReady(void)
{
return (READ_BIT(RCC->CR, RCC_CR_HSIRDY) == (RCC_CR_HSIRDY));
}
/**
* @brief Get HSI Calibration value
* @note When HSITRIM is written, HSICAL is updated with the sum of
* HSITRIM and the factory trim value
* @rmtoll CR HSICAL LL_RCC_HSI_GetCalibration
* @retval Between Min_Data = 0x00 and Max_Data = 0xFF
*/
__STATIC_INLINE uint32_t LL_RCC_HSI_GetCalibration(void)
{
return (uint32_t)(READ_BIT(RCC->CR, RCC_CR_HSICAL) >> RCC_CR_HSICAL_Pos);
}
/**
* @brief Set HSI Calibration trimming
* @note user-programmable trimming value that is added to the HSICAL
* @note Default value is 16, which, when added to the HSICAL value,
* should trim the HSI to 16 MHz +/- 1 %
* @rmtoll CR HSITRIM LL_RCC_HSI_SetCalibTrimming
* @param Value between Min_Data = 0x00 and Max_Data = 0x1F
* @retval None
*/
__STATIC_INLINE void LL_RCC_HSI_SetCalibTrimming(uint32_t Value)
{
MODIFY_REG(RCC->CR, RCC_CR_HSITRIM, Value << RCC_CR_HSITRIM_Pos);
}
/**
* @brief Get HSI Calibration trimming
* @rmtoll CR HSITRIM LL_RCC_HSI_GetCalibTrimming
* @retval Between Min_Data = 0x00 and Max_Data = 0x1F
*/
__STATIC_INLINE uint32_t LL_RCC_HSI_GetCalibTrimming(void)
{
return (uint32_t)(READ_BIT(RCC->CR, RCC_CR_HSITRIM) >> RCC_CR_HSITRIM_Pos);
}
/**
* @}
*/
/** @defgroup RCC_LL_EF_LSE LSE
* @{
*/
/**
* @brief Enable Low Speed External (LSE) crystal.
* @rmtoll BDCR LSEON LL_RCC_LSE_Enable
* @retval None
*/
__STATIC_INLINE void LL_RCC_LSE_Enable(void)
{
SET_BIT(RCC->BDCR, RCC_BDCR_LSEON);
}
/**
* @brief Disable Low Speed External (LSE) crystal.
* @rmtoll BDCR LSEON LL_RCC_LSE_Disable
* @retval None
*/
__STATIC_INLINE void LL_RCC_LSE_Disable(void)
{
CLEAR_BIT(RCC->BDCR, RCC_BDCR_LSEON);
}
/**
* @brief Enable external clock source (LSE bypass).
* @rmtoll BDCR LSEBYP LL_RCC_LSE_EnableBypass
* @retval None
*/
__STATIC_INLINE void LL_RCC_LSE_EnableBypass(void)
{
SET_BIT(RCC->BDCR, RCC_BDCR_LSEBYP);
}
/**
* @brief Disable external clock source (LSE bypass).
* @rmtoll BDCR LSEBYP LL_RCC_LSE_DisableBypass
* @retval None
*/
__STATIC_INLINE void LL_RCC_LSE_DisableBypass(void)
{
CLEAR_BIT(RCC->BDCR, RCC_BDCR_LSEBYP);
}
/**
* @brief Check if LSE oscillator Ready
* @rmtoll BDCR LSERDY LL_RCC_LSE_IsReady
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_LSE_IsReady(void)
{
return (READ_BIT(RCC->BDCR, RCC_BDCR_LSERDY) == (RCC_BDCR_LSERDY));
}
/**
* @}
*/
/** @defgroup RCC_LL_EF_LSI LSI
* @{
*/
/**
* @brief Enable LSI Oscillator
* @rmtoll CSR LSION LL_RCC_LSI_Enable
* @retval None
*/
__STATIC_INLINE void LL_RCC_LSI_Enable(void)
{
SET_BIT(RCC->CSR, RCC_CSR_LSION);
}
/**
* @brief Disable LSI Oscillator
* @rmtoll CSR LSION LL_RCC_LSI_Disable
* @retval None
*/
__STATIC_INLINE void LL_RCC_LSI_Disable(void)
{
CLEAR_BIT(RCC->CSR, RCC_CSR_LSION);
}
/**
* @brief Check if LSI is Ready
* @rmtoll CSR LSIRDY LL_RCC_LSI_IsReady
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_LSI_IsReady(void)
{
return (READ_BIT(RCC->CSR, RCC_CSR_LSIRDY) == (RCC_CSR_LSIRDY));
}
/**
* @}
*/
/** @defgroup RCC_LL_EF_System System
* @{
*/
/**
* @brief Configure the system clock source
* @rmtoll CFGR SW LL_RCC_SetSysClkSource
* @param Source This parameter can be one of the following values:
* @arg @ref LL_RCC_SYS_CLKSOURCE_HSI
* @arg @ref LL_RCC_SYS_CLKSOURCE_HSE
* @arg @ref LL_RCC_SYS_CLKSOURCE_PLL
* @retval None
*/
__STATIC_INLINE void LL_RCC_SetSysClkSource(uint32_t Source)
{
MODIFY_REG(RCC->CFGR, RCC_CFGR_SW, Source);
}
/**
* @brief Get the system clock source
* @rmtoll CFGR SWS LL_RCC_GetSysClkSource
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_SYS_CLKSOURCE_STATUS_HSI
* @arg @ref LL_RCC_SYS_CLKSOURCE_STATUS_HSE
* @arg @ref LL_RCC_SYS_CLKSOURCE_STATUS_PLL
*/
__STATIC_INLINE uint32_t LL_RCC_GetSysClkSource(void)
{
return (uint32_t)(READ_BIT(RCC->CFGR, RCC_CFGR_SWS));
}
/**
* @brief Set AHB prescaler
* @rmtoll CFGR HPRE LL_RCC_SetAHBPrescaler
* @param Prescaler This parameter can be one of the following values:
* @arg @ref LL_RCC_SYSCLK_DIV_1
* @arg @ref LL_RCC_SYSCLK_DIV_2
* @arg @ref LL_RCC_SYSCLK_DIV_4
* @arg @ref LL_RCC_SYSCLK_DIV_8
* @arg @ref LL_RCC_SYSCLK_DIV_16
* @arg @ref LL_RCC_SYSCLK_DIV_64
* @arg @ref LL_RCC_SYSCLK_DIV_128
* @arg @ref LL_RCC_SYSCLK_DIV_256
* @arg @ref LL_RCC_SYSCLK_DIV_512
* @retval None
*/
__STATIC_INLINE void LL_RCC_SetAHBPrescaler(uint32_t Prescaler)
{
MODIFY_REG(RCC->CFGR, RCC_CFGR_HPRE, Prescaler);
}
/**
* @brief Set APB1 prescaler
* @rmtoll CFGR PPRE1 LL_RCC_SetAPB1Prescaler
* @param Prescaler This parameter can be one of the following values:
* @arg @ref LL_RCC_APB1_DIV_1
* @arg @ref LL_RCC_APB1_DIV_2
* @arg @ref LL_RCC_APB1_DIV_4
* @arg @ref LL_RCC_APB1_DIV_8
* @arg @ref LL_RCC_APB1_DIV_16
* @retval None
*/
__STATIC_INLINE void LL_RCC_SetAPB1Prescaler(uint32_t Prescaler)
{
MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE1, Prescaler);
}
/**
* @brief Set APB2 prescaler
* @rmtoll CFGR PPRE2 LL_RCC_SetAPB2Prescaler
* @param Prescaler This parameter can be one of the following values:
* @arg @ref LL_RCC_APB2_DIV_1
* @arg @ref LL_RCC_APB2_DIV_2
* @arg @ref LL_RCC_APB2_DIV_4
* @arg @ref LL_RCC_APB2_DIV_8
* @arg @ref LL_RCC_APB2_DIV_16
* @retval None
*/
__STATIC_INLINE void LL_RCC_SetAPB2Prescaler(uint32_t Prescaler)
{
MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE2, Prescaler);
}
/**
* @brief Get AHB prescaler
* @rmtoll CFGR HPRE LL_RCC_GetAHBPrescaler
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_SYSCLK_DIV_1
* @arg @ref LL_RCC_SYSCLK_DIV_2
* @arg @ref LL_RCC_SYSCLK_DIV_4
* @arg @ref LL_RCC_SYSCLK_DIV_8
* @arg @ref LL_RCC_SYSCLK_DIV_16
* @arg @ref LL_RCC_SYSCLK_DIV_64
* @arg @ref LL_RCC_SYSCLK_DIV_128
* @arg @ref LL_RCC_SYSCLK_DIV_256
* @arg @ref LL_RCC_SYSCLK_DIV_512
*/
__STATIC_INLINE uint32_t LL_RCC_GetAHBPrescaler(void)
{
return (uint32_t)(READ_BIT(RCC->CFGR, RCC_CFGR_HPRE));
}
/**
* @brief Get APB1 prescaler
* @rmtoll CFGR PPRE1 LL_RCC_GetAPB1Prescaler
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_APB1_DIV_1
* @arg @ref LL_RCC_APB1_DIV_2
* @arg @ref LL_RCC_APB1_DIV_4
* @arg @ref LL_RCC_APB1_DIV_8
* @arg @ref LL_RCC_APB1_DIV_16
*/
__STATIC_INLINE uint32_t LL_RCC_GetAPB1Prescaler(void)
{
return (uint32_t)(READ_BIT(RCC->CFGR, RCC_CFGR_PPRE1));
}
/**
* @brief Get APB2 prescaler
* @rmtoll CFGR PPRE2 LL_RCC_GetAPB2Prescaler
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_APB2_DIV_1
* @arg @ref LL_RCC_APB2_DIV_2
* @arg @ref LL_RCC_APB2_DIV_4
* @arg @ref LL_RCC_APB2_DIV_8
* @arg @ref LL_RCC_APB2_DIV_16
*/
__STATIC_INLINE uint32_t LL_RCC_GetAPB2Prescaler(void)
{
return (uint32_t)(READ_BIT(RCC->CFGR, RCC_CFGR_PPRE2));
}
/**
* @}
*/
/** @defgroup RCC_LL_EF_MCO MCO
* @{
*/
/**
* @brief Configure MCOx
* @rmtoll CFGR MCO LL_RCC_ConfigMCO
* @param MCOxSource This parameter can be one of the following values:
* @arg @ref LL_RCC_MCO1SOURCE_NOCLOCK
* @arg @ref LL_RCC_MCO1SOURCE_SYSCLK
* @arg @ref LL_RCC_MCO1SOURCE_HSI
* @arg @ref LL_RCC_MCO1SOURCE_HSE
* @arg @ref LL_RCC_MCO1SOURCE_PLLCLK_DIV_2
* @arg @ref LL_RCC_MCO1SOURCE_PLL2CLK (*)
* @arg @ref LL_RCC_MCO1SOURCE_PLLI2SCLK_DIV2 (*)
* @arg @ref LL_RCC_MCO1SOURCE_EXT_HSE (*)
* @arg @ref LL_RCC_MCO1SOURCE_PLLI2SCLK (*)
*
* (*) value not defined in all devices
* @retval None
*/
__STATIC_INLINE void LL_RCC_ConfigMCO(uint32_t MCOxSource)
{
MODIFY_REG(RCC->CFGR, RCC_CFGR_MCOSEL, MCOxSource);
}
/**
* @}
*/
/** @defgroup RCC_LL_EF_Peripheral_Clock_Source Peripheral Clock Source
* @{
*/
#if defined(RCC_CFGR2_I2S2SRC)
/**
* @brief Configure I2Sx clock source
* @rmtoll CFGR2 I2S2SRC LL_RCC_SetI2SClockSource\n
* CFGR2 I2S3SRC LL_RCC_SetI2SClockSource
* @param I2SxSource This parameter can be one of the following values:
* @arg @ref LL_RCC_I2S2_CLKSOURCE_SYSCLK
* @arg @ref LL_RCC_I2S2_CLKSOURCE_PLLI2S_VCO
* @arg @ref LL_RCC_I2S3_CLKSOURCE_SYSCLK
* @arg @ref LL_RCC_I2S3_CLKSOURCE_PLLI2S_VCO
* @retval None
*/
__STATIC_INLINE void LL_RCC_SetI2SClockSource(uint32_t I2SxSource)
{
MODIFY_REG(RCC->CFGR2, (I2SxSource & 0xFFFF0000U), (I2SxSource << 16U));
}
#endif /* RCC_CFGR2_I2S2SRC */
#if defined(USB_OTG_FS) || defined(USB)
/**
* @brief Configure USB clock source
* @rmtoll CFGR OTGFSPRE LL_RCC_SetUSBClockSource\n
* CFGR USBPRE LL_RCC_SetUSBClockSource
* @param USBxSource This parameter can be one of the following values:
* @arg @ref LL_RCC_USB_CLKSOURCE_PLL (*)
* @arg @ref LL_RCC_USB_CLKSOURCE_PLL_DIV_1_5 (*)
* @arg @ref LL_RCC_USB_CLKSOURCE_PLL_DIV_2 (*)
* @arg @ref LL_RCC_USB_CLKSOURCE_PLL_DIV_3 (*)
*
* (*) value not defined in all devices
* @retval None
*/
__STATIC_INLINE void LL_RCC_SetUSBClockSource(uint32_t USBxSource)
{
#if defined(RCC_CFGR_USBPRE)
MODIFY_REG(RCC->CFGR, RCC_CFGR_USBPRE, USBxSource);
#else /*RCC_CFGR_OTGFSPRE*/
MODIFY_REG(RCC->CFGR, RCC_CFGR_OTGFSPRE, USBxSource);
#endif /*RCC_CFGR_USBPRE*/
}
#endif /* USB_OTG_FS || USB */
/**
* @brief Configure ADC clock source
* @rmtoll CFGR ADCPRE LL_RCC_SetADCClockSource
* @param ADCxSource This parameter can be one of the following values:
* @arg @ref LL_RCC_ADC_CLKSRC_PCLK2_DIV_2
* @arg @ref LL_RCC_ADC_CLKSRC_PCLK2_DIV_4
* @arg @ref LL_RCC_ADC_CLKSRC_PCLK2_DIV_6
* @arg @ref LL_RCC_ADC_CLKSRC_PCLK2_DIV_8
* @retval None
*/
__STATIC_INLINE void LL_RCC_SetADCClockSource(uint32_t ADCxSource)
{
MODIFY_REG(RCC->CFGR, RCC_CFGR_ADCPRE, ADCxSource);
}
#if defined(RCC_CFGR2_I2S2SRC)
/**
* @brief Get I2Sx clock source
* @rmtoll CFGR2 I2S2SRC LL_RCC_GetI2SClockSource\n
* CFGR2 I2S3SRC LL_RCC_GetI2SClockSource
* @param I2Sx This parameter can be one of the following values:
* @arg @ref LL_RCC_I2S2_CLKSOURCE
* @arg @ref LL_RCC_I2S3_CLKSOURCE
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_I2S2_CLKSOURCE_SYSCLK
* @arg @ref LL_RCC_I2S2_CLKSOURCE_PLLI2S_VCO
* @arg @ref LL_RCC_I2S3_CLKSOURCE_SYSCLK
* @arg @ref LL_RCC_I2S3_CLKSOURCE_PLLI2S_VCO
*/
__STATIC_INLINE uint32_t LL_RCC_GetI2SClockSource(uint32_t I2Sx)
{
return (uint32_t)(READ_BIT(RCC->CFGR2, I2Sx) >> 16U | I2Sx);
}
#endif /* RCC_CFGR2_I2S2SRC */
#if defined(USB_OTG_FS) || defined(USB)
/**
* @brief Get USBx clock source
* @rmtoll CFGR OTGFSPRE LL_RCC_GetUSBClockSource\n
* CFGR USBPRE LL_RCC_GetUSBClockSource
* @param USBx This parameter can be one of the following values:
* @arg @ref LL_RCC_USB_CLKSOURCE
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_USB_CLKSOURCE_PLL (*)
* @arg @ref LL_RCC_USB_CLKSOURCE_PLL_DIV_1_5 (*)
* @arg @ref LL_RCC_USB_CLKSOURCE_PLL_DIV_2 (*)
* @arg @ref LL_RCC_USB_CLKSOURCE_PLL_DIV_3 (*)
*
* (*) value not defined in all devices
*/
__STATIC_INLINE uint32_t LL_RCC_GetUSBClockSource(uint32_t USBx)
{
return (uint32_t)(READ_BIT(RCC->CFGR, USBx));
}
#endif /* USB_OTG_FS || USB */
/**
* @brief Get ADCx clock source
* @rmtoll CFGR ADCPRE LL_RCC_GetADCClockSource
* @param ADCx This parameter can be one of the following values:
* @arg @ref LL_RCC_ADC_CLKSOURCE
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_ADC_CLKSRC_PCLK2_DIV_2
* @arg @ref LL_RCC_ADC_CLKSRC_PCLK2_DIV_4
* @arg @ref LL_RCC_ADC_CLKSRC_PCLK2_DIV_6
* @arg @ref LL_RCC_ADC_CLKSRC_PCLK2_DIV_8
*/
__STATIC_INLINE uint32_t LL_RCC_GetADCClockSource(uint32_t ADCx)
{
return (uint32_t)(READ_BIT(RCC->CFGR, ADCx));
}
/**
* @}
*/
/** @defgroup RCC_LL_EF_RTC RTC
* @{
*/
/**
* @brief Set RTC Clock Source
* @note Once the RTC clock source has been selected, it cannot be changed any more unless
* the Backup domain is reset. The BDRST bit can be used to reset them.
* @rmtoll BDCR RTCSEL LL_RCC_SetRTCClockSource
* @param Source This parameter can be one of the following values:
* @arg @ref LL_RCC_RTC_CLKSOURCE_NONE
* @arg @ref LL_RCC_RTC_CLKSOURCE_LSE
* @arg @ref LL_RCC_RTC_CLKSOURCE_LSI
* @arg @ref LL_RCC_RTC_CLKSOURCE_HSE_DIV128
* @retval None
*/
__STATIC_INLINE void LL_RCC_SetRTCClockSource(uint32_t Source)
{
MODIFY_REG(RCC->BDCR, RCC_BDCR_RTCSEL, Source);
}
/**
* @brief Get RTC Clock Source
* @rmtoll BDCR RTCSEL LL_RCC_GetRTCClockSource
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_RTC_CLKSOURCE_NONE
* @arg @ref LL_RCC_RTC_CLKSOURCE_LSE
* @arg @ref LL_RCC_RTC_CLKSOURCE_LSI
* @arg @ref LL_RCC_RTC_CLKSOURCE_HSE_DIV128
*/
__STATIC_INLINE uint32_t LL_RCC_GetRTCClockSource(void)
{
return (uint32_t)(READ_BIT(RCC->BDCR, RCC_BDCR_RTCSEL));
}
/**
* @brief Enable RTC
* @rmtoll BDCR RTCEN LL_RCC_EnableRTC
* @retval None
*/
__STATIC_INLINE void LL_RCC_EnableRTC(void)
{
SET_BIT(RCC->BDCR, RCC_BDCR_RTCEN);
}
/**
* @brief Disable RTC
* @rmtoll BDCR RTCEN LL_RCC_DisableRTC
* @retval None
*/
__STATIC_INLINE void LL_RCC_DisableRTC(void)
{
CLEAR_BIT(RCC->BDCR, RCC_BDCR_RTCEN);
}
/**
* @brief Check if RTC has been enabled or not
* @rmtoll BDCR RTCEN LL_RCC_IsEnabledRTC
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsEnabledRTC(void)
{
return (READ_BIT(RCC->BDCR, RCC_BDCR_RTCEN) == (RCC_BDCR_RTCEN));
}
/**
* @brief Force the Backup domain reset
* @rmtoll BDCR BDRST LL_RCC_ForceBackupDomainReset
* @retval None
*/
__STATIC_INLINE void LL_RCC_ForceBackupDomainReset(void)
{
SET_BIT(RCC->BDCR, RCC_BDCR_BDRST);
}
/**
* @brief Release the Backup domain reset
* @rmtoll BDCR BDRST LL_RCC_ReleaseBackupDomainReset
* @retval None
*/
__STATIC_INLINE void LL_RCC_ReleaseBackupDomainReset(void)
{
CLEAR_BIT(RCC->BDCR, RCC_BDCR_BDRST);
}
/**
* @}
*/
/** @defgroup RCC_LL_EF_PLL PLL
* @{
*/
/**
* @brief Enable PLL
* @rmtoll CR PLLON LL_RCC_PLL_Enable
* @retval None
*/
__STATIC_INLINE void LL_RCC_PLL_Enable(void)
{
SET_BIT(RCC->CR, RCC_CR_PLLON);
}
/**
* @brief Disable PLL
* @note Cannot be disabled if the PLL clock is used as the system clock
* @rmtoll CR PLLON LL_RCC_PLL_Disable
* @retval None
*/
__STATIC_INLINE void LL_RCC_PLL_Disable(void)
{
CLEAR_BIT(RCC->CR, RCC_CR_PLLON);
}
/**
* @brief Check if PLL Ready
* @rmtoll CR PLLRDY LL_RCC_PLL_IsReady
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_PLL_IsReady(void)
{
return (READ_BIT(RCC->CR, RCC_CR_PLLRDY) == (RCC_CR_PLLRDY));
}
/**
* @brief Configure PLL used for SYSCLK Domain
* @rmtoll CFGR PLLSRC LL_RCC_PLL_ConfigDomain_SYS\n
* CFGR PLLXTPRE LL_RCC_PLL_ConfigDomain_SYS\n
* CFGR PLLMULL LL_RCC_PLL_ConfigDomain_SYS\n
* CFGR2 PREDIV1 LL_RCC_PLL_ConfigDomain_SYS\n
* CFGR2 PREDIV1SRC LL_RCC_PLL_ConfigDomain_SYS
* @param Source This parameter can be one of the following values:
* @arg @ref LL_RCC_PLLSOURCE_HSI_DIV_2
* @arg @ref LL_RCC_PLLSOURCE_HSE_DIV_1
* @arg @ref LL_RCC_PLLSOURCE_HSE_DIV_2 (*)
* @arg @ref LL_RCC_PLLSOURCE_HSE_DIV_3 (*)
* @arg @ref LL_RCC_PLLSOURCE_HSE_DIV_4 (*)
* @arg @ref LL_RCC_PLLSOURCE_HSE_DIV_5 (*)
* @arg @ref LL_RCC_PLLSOURCE_HSE_DIV_6 (*)
* @arg @ref LL_RCC_PLLSOURCE_HSE_DIV_7 (*)
* @arg @ref LL_RCC_PLLSOURCE_HSE_DIV_8 (*)
* @arg @ref LL_RCC_PLLSOURCE_HSE_DIV_9 (*)
* @arg @ref LL_RCC_PLLSOURCE_HSE_DIV_10 (*)
* @arg @ref LL_RCC_PLLSOURCE_HSE_DIV_11 (*)
* @arg @ref LL_RCC_PLLSOURCE_HSE_DIV_12 (*)
* @arg @ref LL_RCC_PLLSOURCE_HSE_DIV_13 (*)
* @arg @ref LL_RCC_PLLSOURCE_HSE_DIV_14 (*)
* @arg @ref LL_RCC_PLLSOURCE_HSE_DIV_15 (*)
* @arg @ref LL_RCC_PLLSOURCE_HSE_DIV_16 (*)
* @arg @ref LL_RCC_PLLSOURCE_PLL2_DIV_1 (*)
* @arg @ref LL_RCC_PLLSOURCE_PLL2_DIV_2 (*)
* @arg @ref LL_RCC_PLLSOURCE_PLL2_DIV_3 (*)
* @arg @ref LL_RCC_PLLSOURCE_PLL2_DIV_4 (*)
* @arg @ref LL_RCC_PLLSOURCE_PLL2_DIV_5 (*)
* @arg @ref LL_RCC_PLLSOURCE_PLL2_DIV_6 (*)
* @arg @ref LL_RCC_PLLSOURCE_PLL2_DIV_7 (*)
* @arg @ref LL_RCC_PLLSOURCE_PLL2_DIV_8 (*)
* @arg @ref LL_RCC_PLLSOURCE_PLL2_DIV_9 (*)
* @arg @ref LL_RCC_PLLSOURCE_PLL2_DIV_10 (*)
* @arg @ref LL_RCC_PLLSOURCE_PLL2_DIV_11 (*)
* @arg @ref LL_RCC_PLLSOURCE_PLL2_DIV_12 (*)
* @arg @ref LL_RCC_PLLSOURCE_PLL2_DIV_13 (*)
* @arg @ref LL_RCC_PLLSOURCE_PLL2_DIV_14 (*)
* @arg @ref LL_RCC_PLLSOURCE_PLL2_DIV_15 (*)
* @arg @ref LL_RCC_PLLSOURCE_PLL2_DIV_16 (*)
*
* (*) value not defined in all devices
* @param PLLMul This parameter can be one of the following values:
* @arg @ref LL_RCC_PLL_MUL_2 (*)
* @arg @ref LL_RCC_PLL_MUL_3 (*)
* @arg @ref LL_RCC_PLL_MUL_4
* @arg @ref LL_RCC_PLL_MUL_5
* @arg @ref LL_RCC_PLL_MUL_6
* @arg @ref LL_RCC_PLL_MUL_7
* @arg @ref LL_RCC_PLL_MUL_8
* @arg @ref LL_RCC_PLL_MUL_9
* @arg @ref LL_RCC_PLL_MUL_6_5 (*)
* @arg @ref LL_RCC_PLL_MUL_10 (*)
* @arg @ref LL_RCC_PLL_MUL_11 (*)
* @arg @ref LL_RCC_PLL_MUL_12 (*)
* @arg @ref LL_RCC_PLL_MUL_13 (*)
* @arg @ref LL_RCC_PLL_MUL_14 (*)
* @arg @ref LL_RCC_PLL_MUL_15 (*)
* @arg @ref LL_RCC_PLL_MUL_16 (*)
*
* (*) value not defined in all devices
* @retval None
*/
__STATIC_INLINE void LL_RCC_PLL_ConfigDomain_SYS(uint32_t Source, uint32_t PLLMul)
{
MODIFY_REG(RCC->CFGR, RCC_CFGR_PLLSRC | RCC_CFGR_PLLXTPRE | RCC_CFGR_PLLMULL,
(Source & (RCC_CFGR_PLLSRC | RCC_CFGR_PLLXTPRE)) | PLLMul);
#if defined(RCC_CFGR2_PREDIV1)
#if defined(RCC_CFGR2_PREDIV1SRC)
MODIFY_REG(RCC->CFGR2, (RCC_CFGR2_PREDIV1 | RCC_CFGR2_PREDIV1SRC),
(Source & RCC_CFGR2_PREDIV1) | ((Source & (RCC_CFGR2_PREDIV1SRC << 4U)) >> 4U));
#else
MODIFY_REG(RCC->CFGR2, RCC_CFGR2_PREDIV1, (Source & RCC_CFGR2_PREDIV1));
#endif /*RCC_CFGR2_PREDIV1SRC*/
#endif /*RCC_CFGR2_PREDIV1*/
}
/**
* @brief Configure PLL clock source
* @rmtoll CFGR PLLSRC LL_RCC_PLL_SetMainSource\n
* CFGR2 PREDIV1SRC LL_RCC_PLL_SetMainSource
* @param PLLSource This parameter can be one of the following values:
* @arg @ref LL_RCC_PLLSOURCE_HSI_DIV_2
* @arg @ref LL_RCC_PLLSOURCE_HSE
* @arg @ref LL_RCC_PLLSOURCE_PLL2 (*)
* @retval None
*/
__STATIC_INLINE void LL_RCC_PLL_SetMainSource(uint32_t PLLSource)
{
#if defined(RCC_CFGR2_PREDIV1SRC)
MODIFY_REG(RCC->CFGR2, RCC_CFGR2_PREDIV1SRC, ((PLLSource & (RCC_CFGR2_PREDIV1SRC << 4U)) >> 4U));
#endif /* RCC_CFGR2_PREDIV1SRC */
MODIFY_REG(RCC->CFGR, RCC_CFGR_PLLSRC, PLLSource);
}
/**
* @brief Get the oscillator used as PLL clock source.
* @rmtoll CFGR PLLSRC LL_RCC_PLL_GetMainSource\n
* CFGR2 PREDIV1SRC LL_RCC_PLL_GetMainSource
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_PLLSOURCE_HSI_DIV_2
* @arg @ref LL_RCC_PLLSOURCE_HSE
* @arg @ref LL_RCC_PLLSOURCE_PLL2 (*)
*
* (*) value not defined in all devices
*/
__STATIC_INLINE uint32_t LL_RCC_PLL_GetMainSource(void)
{
#if defined(RCC_CFGR2_PREDIV1SRC)
uint32_t pllsrc = READ_BIT(RCC->CFGR, RCC_CFGR_PLLSRC);
uint32_t predivsrc = (uint32_t)(READ_BIT(RCC->CFGR2, RCC_CFGR2_PREDIV1SRC) << 4U);
return (uint32_t)(pllsrc | predivsrc);
#else
return (uint32_t)(READ_BIT(RCC->CFGR, RCC_CFGR_PLLSRC));
#endif /*RCC_CFGR2_PREDIV1SRC*/
}
/**
* @brief Get PLL multiplication Factor
* @rmtoll CFGR PLLMULL LL_RCC_PLL_GetMultiplicator
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_PLL_MUL_2 (*)
* @arg @ref LL_RCC_PLL_MUL_3 (*)
* @arg @ref LL_RCC_PLL_MUL_4
* @arg @ref LL_RCC_PLL_MUL_5
* @arg @ref LL_RCC_PLL_MUL_6
* @arg @ref LL_RCC_PLL_MUL_7
* @arg @ref LL_RCC_PLL_MUL_8
* @arg @ref LL_RCC_PLL_MUL_9
* @arg @ref LL_RCC_PLL_MUL_6_5 (*)
* @arg @ref LL_RCC_PLL_MUL_10 (*)
* @arg @ref LL_RCC_PLL_MUL_11 (*)
* @arg @ref LL_RCC_PLL_MUL_12 (*)
* @arg @ref LL_RCC_PLL_MUL_13 (*)
* @arg @ref LL_RCC_PLL_MUL_14 (*)
* @arg @ref LL_RCC_PLL_MUL_15 (*)
* @arg @ref LL_RCC_PLL_MUL_16 (*)
*
* (*) value not defined in all devices
*/
__STATIC_INLINE uint32_t LL_RCC_PLL_GetMultiplicator(void)
{
return (uint32_t)(READ_BIT(RCC->CFGR, RCC_CFGR_PLLMULL));
}
/**
* @brief Get PREDIV1 division factor for the main PLL
* @note They can be written only when the PLL is disabled
* @rmtoll CFGR2 PREDIV1 LL_RCC_PLL_GetPrediv\n
* CFGR2 PLLXTPRE LL_RCC_PLL_GetPrediv
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_PREDIV_DIV_1
* @arg @ref LL_RCC_PREDIV_DIV_2
* @arg @ref LL_RCC_PREDIV_DIV_3 (*)
* @arg @ref LL_RCC_PREDIV_DIV_4 (*)
* @arg @ref LL_RCC_PREDIV_DIV_5 (*)
* @arg @ref LL_RCC_PREDIV_DIV_6 (*)
* @arg @ref LL_RCC_PREDIV_DIV_7 (*)
* @arg @ref LL_RCC_PREDIV_DIV_8 (*)
* @arg @ref LL_RCC_PREDIV_DIV_9 (*)
* @arg @ref LL_RCC_PREDIV_DIV_10 (*)
* @arg @ref LL_RCC_PREDIV_DIV_11 (*)
* @arg @ref LL_RCC_PREDIV_DIV_12 (*)
* @arg @ref LL_RCC_PREDIV_DIV_13 (*)
* @arg @ref LL_RCC_PREDIV_DIV_14 (*)
* @arg @ref LL_RCC_PREDIV_DIV_15 (*)
* @arg @ref LL_RCC_PREDIV_DIV_16 (*)
*
* (*) value not defined in all devices
*/
__STATIC_INLINE uint32_t LL_RCC_PLL_GetPrediv(void)
{
#if defined(RCC_CFGR2_PREDIV1)
return (uint32_t)(READ_BIT(RCC->CFGR2, RCC_CFGR2_PREDIV1));
#else
return (uint32_t)(READ_BIT(RCC->CFGR, RCC_CFGR_PLLXTPRE) >> RCC_CFGR_PLLXTPRE_Pos);
#endif /*RCC_CFGR2_PREDIV1*/
}
/**
* @}
*/
#if defined(RCC_PLLI2S_SUPPORT)
/** @defgroup RCC_LL_EF_PLLI2S PLLI2S
* @{
*/
/**
* @brief Enable PLLI2S
* @rmtoll CR PLL3ON LL_RCC_PLLI2S_Enable
* @retval None
*/
__STATIC_INLINE void LL_RCC_PLLI2S_Enable(void)
{
SET_BIT(RCC->CR, RCC_CR_PLL3ON);
}
/**
* @brief Disable PLLI2S
* @rmtoll CR PLL3ON LL_RCC_PLLI2S_Disable
* @retval None
*/
__STATIC_INLINE void LL_RCC_PLLI2S_Disable(void)
{
CLEAR_BIT(RCC->CR, RCC_CR_PLL3ON);
}
/**
* @brief Check if PLLI2S Ready
* @rmtoll CR PLL3RDY LL_RCC_PLLI2S_IsReady
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_PLLI2S_IsReady(void)
{
return (READ_BIT(RCC->CR, RCC_CR_PLL3RDY) == (RCC_CR_PLL3RDY));
}
/**
* @brief Configure PLLI2S used for I2S Domain
* @rmtoll CFGR2 PREDIV2 LL_RCC_PLL_ConfigDomain_PLLI2S\n
* CFGR2 PLL3MUL LL_RCC_PLL_ConfigDomain_PLLI2S
* @param Divider This parameter can be one of the following values:
* @arg @ref LL_RCC_HSE_PREDIV2_DIV_1
* @arg @ref LL_RCC_HSE_PREDIV2_DIV_2
* @arg @ref LL_RCC_HSE_PREDIV2_DIV_3
* @arg @ref LL_RCC_HSE_PREDIV2_DIV_4
* @arg @ref LL_RCC_HSE_PREDIV2_DIV_5
* @arg @ref LL_RCC_HSE_PREDIV2_DIV_6
* @arg @ref LL_RCC_HSE_PREDIV2_DIV_7
* @arg @ref LL_RCC_HSE_PREDIV2_DIV_8
* @arg @ref LL_RCC_HSE_PREDIV2_DIV_9
* @arg @ref LL_RCC_HSE_PREDIV2_DIV_10
* @arg @ref LL_RCC_HSE_PREDIV2_DIV_11
* @arg @ref LL_RCC_HSE_PREDIV2_DIV_12
* @arg @ref LL_RCC_HSE_PREDIV2_DIV_13
* @arg @ref LL_RCC_HSE_PREDIV2_DIV_14
* @arg @ref LL_RCC_HSE_PREDIV2_DIV_15
* @arg @ref LL_RCC_HSE_PREDIV2_DIV_16
* @param Multiplicator This parameter can be one of the following values:
* @arg @ref LL_RCC_PLLI2S_MUL_8
* @arg @ref LL_RCC_PLLI2S_MUL_9
* @arg @ref LL_RCC_PLLI2S_MUL_10
* @arg @ref LL_RCC_PLLI2S_MUL_11
* @arg @ref LL_RCC_PLLI2S_MUL_12
* @arg @ref LL_RCC_PLLI2S_MUL_13
* @arg @ref LL_RCC_PLLI2S_MUL_14
* @arg @ref LL_RCC_PLLI2S_MUL_16
* @arg @ref LL_RCC_PLLI2S_MUL_20
* @retval None
*/
__STATIC_INLINE void LL_RCC_PLL_ConfigDomain_PLLI2S(uint32_t Divider, uint32_t Multiplicator)
{
MODIFY_REG(RCC->CFGR2, RCC_CFGR2_PREDIV2 | RCC_CFGR2_PLL3MUL, Divider | Multiplicator);
}
/**
* @brief Get PLLI2S Multiplication Factor
* @rmtoll CFGR2 PLL3MUL LL_RCC_PLLI2S_GetMultiplicator
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_PLLI2S_MUL_8
* @arg @ref LL_RCC_PLLI2S_MUL_9
* @arg @ref LL_RCC_PLLI2S_MUL_10
* @arg @ref LL_RCC_PLLI2S_MUL_11
* @arg @ref LL_RCC_PLLI2S_MUL_12
* @arg @ref LL_RCC_PLLI2S_MUL_13
* @arg @ref LL_RCC_PLLI2S_MUL_14
* @arg @ref LL_RCC_PLLI2S_MUL_16
* @arg @ref LL_RCC_PLLI2S_MUL_20
*/
__STATIC_INLINE uint32_t LL_RCC_PLLI2S_GetMultiplicator(void)
{
return (uint32_t)(READ_BIT(RCC->CFGR2, RCC_CFGR2_PLL3MUL));
}
/**
* @}
*/
#endif /* RCC_PLLI2S_SUPPORT */
#if defined(RCC_PLL2_SUPPORT)
/** @defgroup RCC_LL_EF_PLL2 PLL2
* @{
*/
/**
* @brief Enable PLL2
* @rmtoll CR PLL2ON LL_RCC_PLL2_Enable
* @retval None
*/
__STATIC_INLINE void LL_RCC_PLL2_Enable(void)
{
SET_BIT(RCC->CR, RCC_CR_PLL2ON);
}
/**
* @brief Disable PLL2
* @rmtoll CR PLL2ON LL_RCC_PLL2_Disable
* @retval None
*/
__STATIC_INLINE void LL_RCC_PLL2_Disable(void)
{
CLEAR_BIT(RCC->CR, RCC_CR_PLL2ON);
}
/**
* @brief Check if PLL2 Ready
* @rmtoll CR PLL2RDY LL_RCC_PLL2_IsReady
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_PLL2_IsReady(void)
{
return (READ_BIT(RCC->CR, RCC_CR_PLL2RDY) == (RCC_CR_PLL2RDY));
}
/**
* @brief Configure PLL2 used for PLL2 Domain
* @rmtoll CFGR2 PREDIV2 LL_RCC_PLL_ConfigDomain_PLL2\n
* CFGR2 PLL2MUL LL_RCC_PLL_ConfigDomain_PLL2
* @param Divider This parameter can be one of the following values:
* @arg @ref LL_RCC_HSE_PREDIV2_DIV_1
* @arg @ref LL_RCC_HSE_PREDIV2_DIV_2
* @arg @ref LL_RCC_HSE_PREDIV2_DIV_3
* @arg @ref LL_RCC_HSE_PREDIV2_DIV_4
* @arg @ref LL_RCC_HSE_PREDIV2_DIV_5
* @arg @ref LL_RCC_HSE_PREDIV2_DIV_6
* @arg @ref LL_RCC_HSE_PREDIV2_DIV_7
* @arg @ref LL_RCC_HSE_PREDIV2_DIV_8
* @arg @ref LL_RCC_HSE_PREDIV2_DIV_9
* @arg @ref LL_RCC_HSE_PREDIV2_DIV_10
* @arg @ref LL_RCC_HSE_PREDIV2_DIV_11
* @arg @ref LL_RCC_HSE_PREDIV2_DIV_12
* @arg @ref LL_RCC_HSE_PREDIV2_DIV_13
* @arg @ref LL_RCC_HSE_PREDIV2_DIV_14
* @arg @ref LL_RCC_HSE_PREDIV2_DIV_15
* @arg @ref LL_RCC_HSE_PREDIV2_DIV_16
* @param Multiplicator This parameter can be one of the following values:
* @arg @ref LL_RCC_PLL2_MUL_8
* @arg @ref LL_RCC_PLL2_MUL_9
* @arg @ref LL_RCC_PLL2_MUL_10
* @arg @ref LL_RCC_PLL2_MUL_11
* @arg @ref LL_RCC_PLL2_MUL_12
* @arg @ref LL_RCC_PLL2_MUL_13
* @arg @ref LL_RCC_PLL2_MUL_14
* @arg @ref LL_RCC_PLL2_MUL_16
* @arg @ref LL_RCC_PLL2_MUL_20
* @retval None
*/
__STATIC_INLINE void LL_RCC_PLL_ConfigDomain_PLL2(uint32_t Divider, uint32_t Multiplicator)
{
MODIFY_REG(RCC->CFGR2, RCC_CFGR2_PREDIV2 | RCC_CFGR2_PLL2MUL, Divider | Multiplicator);
}
/**
* @brief Get PLL2 Multiplication Factor
* @rmtoll CFGR2 PLL2MUL LL_RCC_PLL2_GetMultiplicator
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_PLL2_MUL_8
* @arg @ref LL_RCC_PLL2_MUL_9
* @arg @ref LL_RCC_PLL2_MUL_10
* @arg @ref LL_RCC_PLL2_MUL_11
* @arg @ref LL_RCC_PLL2_MUL_12
* @arg @ref LL_RCC_PLL2_MUL_13
* @arg @ref LL_RCC_PLL2_MUL_14
* @arg @ref LL_RCC_PLL2_MUL_16
* @arg @ref LL_RCC_PLL2_MUL_20
*/
__STATIC_INLINE uint32_t LL_RCC_PLL2_GetMultiplicator(void)
{
return (uint32_t)(READ_BIT(RCC->CFGR2, RCC_CFGR2_PLL2MUL));
}
/**
* @}
*/
#endif /* RCC_PLL2_SUPPORT */
/** @defgroup RCC_LL_EF_FLAG_Management FLAG Management
* @{
*/
/**
* @brief Clear LSI ready interrupt flag
* @rmtoll CIR LSIRDYC LL_RCC_ClearFlag_LSIRDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_ClearFlag_LSIRDY(void)
{
SET_BIT(RCC->CIR, RCC_CIR_LSIRDYC);
}
/**
* @brief Clear LSE ready interrupt flag
* @rmtoll CIR LSERDYC LL_RCC_ClearFlag_LSERDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_ClearFlag_LSERDY(void)
{
SET_BIT(RCC->CIR, RCC_CIR_LSERDYC);
}
/**
* @brief Clear HSI ready interrupt flag
* @rmtoll CIR HSIRDYC LL_RCC_ClearFlag_HSIRDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_ClearFlag_HSIRDY(void)
{
SET_BIT(RCC->CIR, RCC_CIR_HSIRDYC);
}
/**
* @brief Clear HSE ready interrupt flag
* @rmtoll CIR HSERDYC LL_RCC_ClearFlag_HSERDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_ClearFlag_HSERDY(void)
{
SET_BIT(RCC->CIR, RCC_CIR_HSERDYC);
}
/**
* @brief Clear PLL ready interrupt flag
* @rmtoll CIR PLLRDYC LL_RCC_ClearFlag_PLLRDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_ClearFlag_PLLRDY(void)
{
SET_BIT(RCC->CIR, RCC_CIR_PLLRDYC);
}
#if defined(RCC_PLLI2S_SUPPORT)
/**
* @brief Clear PLLI2S ready interrupt flag
* @rmtoll CIR PLL3RDYC LL_RCC_ClearFlag_PLLI2SRDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_ClearFlag_PLLI2SRDY(void)
{
SET_BIT(RCC->CIR, RCC_CIR_PLL3RDYC);
}
#endif /* RCC_PLLI2S_SUPPORT */
#if defined(RCC_PLL2_SUPPORT)
/**
* @brief Clear PLL2 ready interrupt flag
* @rmtoll CIR PLL2RDYC LL_RCC_ClearFlag_PLL2RDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_ClearFlag_PLL2RDY(void)
{
SET_BIT(RCC->CIR, RCC_CIR_PLL2RDYC);
}
#endif /* RCC_PLL2_SUPPORT */
/**
* @brief Clear Clock security system interrupt flag
* @rmtoll CIR CSSC LL_RCC_ClearFlag_HSECSS
* @retval None
*/
__STATIC_INLINE void LL_RCC_ClearFlag_HSECSS(void)
{
SET_BIT(RCC->CIR, RCC_CIR_CSSC);
}
/**
* @brief Check if LSI ready interrupt occurred or not
* @rmtoll CIR LSIRDYF LL_RCC_IsActiveFlag_LSIRDY
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_LSIRDY(void)
{
return (READ_BIT(RCC->CIR, RCC_CIR_LSIRDYF) == (RCC_CIR_LSIRDYF));
}
/**
* @brief Check if LSE ready interrupt occurred or not
* @rmtoll CIR LSERDYF LL_RCC_IsActiveFlag_LSERDY
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_LSERDY(void)
{
return (READ_BIT(RCC->CIR, RCC_CIR_LSERDYF) == (RCC_CIR_LSERDYF));
}
/**
* @brief Check if HSI ready interrupt occurred or not
* @rmtoll CIR HSIRDYF LL_RCC_IsActiveFlag_HSIRDY
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_HSIRDY(void)
{
return (READ_BIT(RCC->CIR, RCC_CIR_HSIRDYF) == (RCC_CIR_HSIRDYF));
}
/**
* @brief Check if HSE ready interrupt occurred or not
* @rmtoll CIR HSERDYF LL_RCC_IsActiveFlag_HSERDY
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_HSERDY(void)
{
return (READ_BIT(RCC->CIR, RCC_CIR_HSERDYF) == (RCC_CIR_HSERDYF));
}
/**
* @brief Check if PLL ready interrupt occurred or not
* @rmtoll CIR PLLRDYF LL_RCC_IsActiveFlag_PLLRDY
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_PLLRDY(void)
{
return (READ_BIT(RCC->CIR, RCC_CIR_PLLRDYF) == (RCC_CIR_PLLRDYF));
}
#if defined(RCC_PLLI2S_SUPPORT)
/**
* @brief Check if PLLI2S ready interrupt occurred or not
* @rmtoll CIR PLL3RDYF LL_RCC_IsActiveFlag_PLLI2SRDY
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_PLLI2SRDY(void)
{
return (READ_BIT(RCC->CIR, RCC_CIR_PLL3RDYF) == (RCC_CIR_PLL3RDYF));
}
#endif /* RCC_PLLI2S_SUPPORT */
#if defined(RCC_PLL2_SUPPORT)
/**
* @brief Check if PLL2 ready interrupt occurred or not
* @rmtoll CIR PLL2RDYF LL_RCC_IsActiveFlag_PLL2RDY
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_PLL2RDY(void)
{
return (READ_BIT(RCC->CIR, RCC_CIR_PLL2RDYF) == (RCC_CIR_PLL2RDYF));
}
#endif /* RCC_PLL2_SUPPORT */
/**
* @brief Check if Clock security system interrupt occurred or not
* @rmtoll CIR CSSF LL_RCC_IsActiveFlag_HSECSS
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_HSECSS(void)
{
return (READ_BIT(RCC->CIR, RCC_CIR_CSSF) == (RCC_CIR_CSSF));
}
/**
* @brief Check if RCC flag Independent Watchdog reset is set or not.
* @rmtoll CSR IWDGRSTF LL_RCC_IsActiveFlag_IWDGRST
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_IWDGRST(void)
{
return (READ_BIT(RCC->CSR, RCC_CSR_IWDGRSTF) == (RCC_CSR_IWDGRSTF));
}
/**
* @brief Check if RCC flag Low Power reset is set or not.
* @rmtoll CSR LPWRRSTF LL_RCC_IsActiveFlag_LPWRRST
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_LPWRRST(void)
{
return (READ_BIT(RCC->CSR, RCC_CSR_LPWRRSTF) == (RCC_CSR_LPWRRSTF));
}
/**
* @brief Check if RCC flag Pin reset is set or not.
* @rmtoll CSR PINRSTF LL_RCC_IsActiveFlag_PINRST
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_PINRST(void)
{
return (READ_BIT(RCC->CSR, RCC_CSR_PINRSTF) == (RCC_CSR_PINRSTF));
}
/**
* @brief Check if RCC flag POR/PDR reset is set or not.
* @rmtoll CSR PORRSTF LL_RCC_IsActiveFlag_PORRST
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_PORRST(void)
{
return (READ_BIT(RCC->CSR, RCC_CSR_PORRSTF) == (RCC_CSR_PORRSTF));
}
/**
* @brief Check if RCC flag Software reset is set or not.
* @rmtoll CSR SFTRSTF LL_RCC_IsActiveFlag_SFTRST
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_SFTRST(void)
{
return (READ_BIT(RCC->CSR, RCC_CSR_SFTRSTF) == (RCC_CSR_SFTRSTF));
}
/**
* @brief Check if RCC flag Window Watchdog reset is set or not.
* @rmtoll CSR WWDGRSTF LL_RCC_IsActiveFlag_WWDGRST
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_WWDGRST(void)
{
return (READ_BIT(RCC->CSR, RCC_CSR_WWDGRSTF) == (RCC_CSR_WWDGRSTF));
}
/**
* @brief Set RMVF bit to clear the reset flags.
* @rmtoll CSR RMVF LL_RCC_ClearResetFlags
* @retval None
*/
__STATIC_INLINE void LL_RCC_ClearResetFlags(void)
{
SET_BIT(RCC->CSR, RCC_CSR_RMVF);
}
/**
* @}
*/
/** @defgroup RCC_LL_EF_IT_Management IT Management
* @{
*/
/**
* @brief Enable LSI ready interrupt
* @rmtoll CIR LSIRDYIE LL_RCC_EnableIT_LSIRDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_EnableIT_LSIRDY(void)
{
SET_BIT(RCC->CIR, RCC_CIR_LSIRDYIE);
}
/**
* @brief Enable LSE ready interrupt
* @rmtoll CIR LSERDYIE LL_RCC_EnableIT_LSERDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_EnableIT_LSERDY(void)
{
SET_BIT(RCC->CIR, RCC_CIR_LSERDYIE);
}
/**
* @brief Enable HSI ready interrupt
* @rmtoll CIR HSIRDYIE LL_RCC_EnableIT_HSIRDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_EnableIT_HSIRDY(void)
{
SET_BIT(RCC->CIR, RCC_CIR_HSIRDYIE);
}
/**
* @brief Enable HSE ready interrupt
* @rmtoll CIR HSERDYIE LL_RCC_EnableIT_HSERDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_EnableIT_HSERDY(void)
{
SET_BIT(RCC->CIR, RCC_CIR_HSERDYIE);
}
/**
* @brief Enable PLL ready interrupt
* @rmtoll CIR PLLRDYIE LL_RCC_EnableIT_PLLRDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_EnableIT_PLLRDY(void)
{
SET_BIT(RCC->CIR, RCC_CIR_PLLRDYIE);
}
#if defined(RCC_PLLI2S_SUPPORT)
/**
* @brief Enable PLLI2S ready interrupt
* @rmtoll CIR PLL3RDYIE LL_RCC_EnableIT_PLLI2SRDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_EnableIT_PLLI2SRDY(void)
{
SET_BIT(RCC->CIR, RCC_CIR_PLL3RDYIE);
}
#endif /* RCC_PLLI2S_SUPPORT */
#if defined(RCC_PLL2_SUPPORT)
/**
* @brief Enable PLL2 ready interrupt
* @rmtoll CIR PLL2RDYIE LL_RCC_EnableIT_PLL2RDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_EnableIT_PLL2RDY(void)
{
SET_BIT(RCC->CIR, RCC_CIR_PLL2RDYIE);
}
#endif /* RCC_PLL2_SUPPORT */
/**
* @brief Disable LSI ready interrupt
* @rmtoll CIR LSIRDYIE LL_RCC_DisableIT_LSIRDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_DisableIT_LSIRDY(void)
{
CLEAR_BIT(RCC->CIR, RCC_CIR_LSIRDYIE);
}
/**
* @brief Disable LSE ready interrupt
* @rmtoll CIR LSERDYIE LL_RCC_DisableIT_LSERDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_DisableIT_LSERDY(void)
{
CLEAR_BIT(RCC->CIR, RCC_CIR_LSERDYIE);
}
/**
* @brief Disable HSI ready interrupt
* @rmtoll CIR HSIRDYIE LL_RCC_DisableIT_HSIRDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_DisableIT_HSIRDY(void)
{
CLEAR_BIT(RCC->CIR, RCC_CIR_HSIRDYIE);
}
/**
* @brief Disable HSE ready interrupt
* @rmtoll CIR HSERDYIE LL_RCC_DisableIT_HSERDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_DisableIT_HSERDY(void)
{
CLEAR_BIT(RCC->CIR, RCC_CIR_HSERDYIE);
}
/**
* @brief Disable PLL ready interrupt
* @rmtoll CIR PLLRDYIE LL_RCC_DisableIT_PLLRDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_DisableIT_PLLRDY(void)
{
CLEAR_BIT(RCC->CIR, RCC_CIR_PLLRDYIE);
}
#if defined(RCC_PLLI2S_SUPPORT)
/**
* @brief Disable PLLI2S ready interrupt
* @rmtoll CIR PLL3RDYIE LL_RCC_DisableIT_PLLI2SRDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_DisableIT_PLLI2SRDY(void)
{
CLEAR_BIT(RCC->CIR, RCC_CIR_PLL3RDYIE);
}
#endif /* RCC_PLLI2S_SUPPORT */
#if defined(RCC_PLL2_SUPPORT)
/**
* @brief Disable PLL2 ready interrupt
* @rmtoll CIR PLL2RDYIE LL_RCC_DisableIT_PLL2RDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_DisableIT_PLL2RDY(void)
{
CLEAR_BIT(RCC->CIR, RCC_CIR_PLL2RDYIE);
}
#endif /* RCC_PLL2_SUPPORT */
/**
* @brief Checks if LSI ready interrupt source is enabled or disabled.
* @rmtoll CIR LSIRDYIE LL_RCC_IsEnabledIT_LSIRDY
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsEnabledIT_LSIRDY(void)
{
return (READ_BIT(RCC->CIR, RCC_CIR_LSIRDYIE) == (RCC_CIR_LSIRDYIE));
}
/**
* @brief Checks if LSE ready interrupt source is enabled or disabled.
* @rmtoll CIR LSERDYIE LL_RCC_IsEnabledIT_LSERDY
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsEnabledIT_LSERDY(void)
{
return (READ_BIT(RCC->CIR, RCC_CIR_LSERDYIE) == (RCC_CIR_LSERDYIE));
}
/**
* @brief Checks if HSI ready interrupt source is enabled or disabled.
* @rmtoll CIR HSIRDYIE LL_RCC_IsEnabledIT_HSIRDY
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsEnabledIT_HSIRDY(void)
{
return (READ_BIT(RCC->CIR, RCC_CIR_HSIRDYIE) == (RCC_CIR_HSIRDYIE));
}
/**
* @brief Checks if HSE ready interrupt source is enabled or disabled.
* @rmtoll CIR HSERDYIE LL_RCC_IsEnabledIT_HSERDY
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsEnabledIT_HSERDY(void)
{
return (READ_BIT(RCC->CIR, RCC_CIR_HSERDYIE) == (RCC_CIR_HSERDYIE));
}
/**
* @brief Checks if PLL ready interrupt source is enabled or disabled.
* @rmtoll CIR PLLRDYIE LL_RCC_IsEnabledIT_PLLRDY
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsEnabledIT_PLLRDY(void)
{
return (READ_BIT(RCC->CIR, RCC_CIR_PLLRDYIE) == (RCC_CIR_PLLRDYIE));
}
#if defined(RCC_PLLI2S_SUPPORT)
/**
* @brief Checks if PLLI2S ready interrupt source is enabled or disabled.
* @rmtoll CIR PLL3RDYIE LL_RCC_IsEnabledIT_PLLI2SRDY
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsEnabledIT_PLLI2SRDY(void)
{
return (READ_BIT(RCC->CIR, RCC_CIR_PLL3RDYIE) == (RCC_CIR_PLL3RDYIE));
}
#endif /* RCC_PLLI2S_SUPPORT */
#if defined(RCC_PLL2_SUPPORT)
/**
* @brief Checks if PLL2 ready interrupt source is enabled or disabled.
* @rmtoll CIR PLL2RDYIE LL_RCC_IsEnabledIT_PLL2RDY
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsEnabledIT_PLL2RDY(void)
{
return (READ_BIT(RCC->CIR, RCC_CIR_PLL2RDYIE) == (RCC_CIR_PLL2RDYIE));
}
#endif /* RCC_PLL2_SUPPORT */
/**
* @}
*/
#if defined(USE_FULL_LL_DRIVER)
/** @defgroup RCC_LL_EF_Init De-initialization function
* @{
*/
ErrorStatus LL_RCC_DeInit(void);
/**
* @}
*/
/** @defgroup RCC_LL_EF_Get_Freq Get system and peripherals clocks frequency functions
* @{
*/
void LL_RCC_GetSystemClocksFreq(LL_RCC_ClocksTypeDef *RCC_Clocks);
#if defined(RCC_CFGR2_I2S2SRC)
uint32_t LL_RCC_GetI2SClockFreq(uint32_t I2SxSource);
#endif /* RCC_CFGR2_I2S2SRC */
#if defined(USB_OTG_FS) || defined(USB)
uint32_t LL_RCC_GetUSBClockFreq(uint32_t USBxSource);
#endif /* USB_OTG_FS || USB */
uint32_t LL_RCC_GetADCClockFreq(uint32_t ADCxSource);
/**
* @}
*/
#endif /* USE_FULL_LL_DRIVER */
/**
* @}
*/
/**
* @}
*/
#endif /* RCC */
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* __STM32F1xx_LL_RCC_H */